Step |
Hyp |
Ref |
Expression |
1 |
|
imsval.3 |
|- M = ( -v ` U ) |
2 |
|
imsval.6 |
|- N = ( normCV ` U ) |
3 |
|
imsval.8 |
|- D = ( IndMet ` U ) |
4 |
|
fveq2 |
|- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
5 |
|
fveq2 |
|- ( u = U -> ( -v ` u ) = ( -v ` U ) ) |
6 |
4 5
|
coeq12d |
|- ( u = U -> ( ( normCV ` u ) o. ( -v ` u ) ) = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
7 |
|
df-ims |
|- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |
8 |
|
fvex |
|- ( normCV ` U ) e. _V |
9 |
|
fvex |
|- ( -v ` U ) e. _V |
10 |
8 9
|
coex |
|- ( ( normCV ` U ) o. ( -v ` U ) ) e. _V |
11 |
6 7 10
|
fvmpt |
|- ( U e. NrmCVec -> ( IndMet ` U ) = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
12 |
2 1
|
coeq12i |
|- ( N o. M ) = ( ( normCV ` U ) o. ( -v ` U ) ) |
13 |
11 3 12
|
3eqtr4g |
|- ( U e. NrmCVec -> D = ( N o. M ) ) |