Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | in2.1 | |- (. ph ,. ps ->. ch ). |
|
| Assertion | in2 | |- (. ph ->. ( ps -> ch ) ). |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in2.1 | |- (. ph ,. ps ->. ch ). |
|
| 2 | 1 | dfvd2i | |- ( ph -> ( ps -> ch ) ) |
| 3 | 2 | dfvd1ir | |- (. ph ->. ( ps -> ch ) ). |