Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | in2.1 | |- (. ph ,. ps ->. ch ). |
|
Assertion | in2 | |- (. ph ->. ( ps -> ch ) ). |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | |- (. ph ,. ps ->. ch ). |
|
2 | 1 | dfvd2i | |- ( ph -> ( ps -> ch ) ) |
3 | 2 | dfvd1ir | |- (. ph ->. ( ps -> ch ) ). |