Metamath Proof Explorer


Theorem in3

Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis in3.1
|- (. ph ,. ps ,. ch ->. th ).
Assertion in3
|- (. ph ,. ps ->. ( ch -> th ) ).

Proof

Step Hyp Ref Expression
1 in3.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 1 dfvd3i
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 dfvd2ir
 |-  (. ph ,. ps ->. ( ch -> th ) ).