Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | in32 | |- ( ( A i^i B ) i^i C ) = ( ( A i^i C ) i^i B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass | |- ( ( A i^i B ) i^i C ) = ( A i^i ( B i^i C ) ) |
|
2 | in12 | |- ( A i^i ( B i^i C ) ) = ( B i^i ( A i^i C ) ) |
|
3 | incom | |- ( B i^i ( A i^i C ) ) = ( ( A i^i C ) i^i B ) |
|
4 | 1 2 3 | 3eqtri | |- ( ( A i^i B ) i^i C ) = ( ( A i^i C ) i^i B ) |