Metamath Proof Explorer


Theorem inab

Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion inab
|- ( { x | ph } i^i { x | ps } ) = { x | ( ph /\ ps ) }

Proof

Step Hyp Ref Expression
1 sban
 |-  ( [ y / x ] ( ph /\ ps ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) )
2 df-clab
 |-  ( y e. { x | ( ph /\ ps ) } <-> [ y / x ] ( ph /\ ps ) )
3 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
4 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
5 3 4 anbi12i
 |-  ( ( y e. { x | ph } /\ y e. { x | ps } ) <-> ( [ y / x ] ph /\ [ y / x ] ps ) )
6 1 2 5 3bitr4ri
 |-  ( ( y e. { x | ph } /\ y e. { x | ps } ) <-> y e. { x | ( ph /\ ps ) } )
7 6 ineqri
 |-  ( { x | ph } i^i { x | ps } ) = { x | ( ph /\ ps ) }