Metamath Proof Explorer


Theorem inabs3

Description: Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion inabs3
|- ( C C_ B -> ( ( A i^i B ) i^i C ) = ( A i^i C ) )

Proof

Step Hyp Ref Expression
1 inass
 |-  ( ( A i^i B ) i^i C ) = ( A i^i ( B i^i C ) )
2 sseqin2
 |-  ( C C_ B <-> ( B i^i C ) = C )
3 2 biimpi
 |-  ( C C_ B -> ( B i^i C ) = C )
4 3 ineq2d
 |-  ( C C_ B -> ( A i^i ( B i^i C ) ) = ( A i^i C ) )
5 1 4 syl5eq
 |-  ( C C_ B -> ( ( A i^i B ) i^i C ) = ( A i^i C ) )