| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
|- ( A e. Inacc -> A e. InaccW ) |
| 2 |
|
winaon |
|- ( A e. InaccW -> A e. On ) |
| 3 |
|
winalim |
|- ( A e. InaccW -> Lim A ) |
| 4 |
|
r1lim |
|- ( ( A e. On /\ Lim A ) -> ( R1 ` A ) = U_ y e. A ( R1 ` y ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( A e. InaccW -> ( R1 ` A ) = U_ y e. A ( R1 ` y ) ) |
| 6 |
5
|
eleq2d |
|- ( A e. InaccW -> ( x e. ( R1 ` A ) <-> x e. U_ y e. A ( R1 ` y ) ) ) |
| 7 |
|
eliun |
|- ( x e. U_ y e. A ( R1 ` y ) <-> E. y e. A x e. ( R1 ` y ) ) |
| 8 |
6 7
|
bitrdi |
|- ( A e. InaccW -> ( x e. ( R1 ` A ) <-> E. y e. A x e. ( R1 ` y ) ) ) |
| 9 |
|
onelon |
|- ( ( A e. On /\ y e. A ) -> y e. On ) |
| 10 |
2 9
|
sylan |
|- ( ( A e. InaccW /\ y e. A ) -> y e. On ) |
| 11 |
|
r1pw |
|- ( y e. On -> ( x e. ( R1 ` y ) <-> ~P x e. ( R1 ` suc y ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( A e. InaccW /\ y e. A ) -> ( x e. ( R1 ` y ) <-> ~P x e. ( R1 ` suc y ) ) ) |
| 13 |
|
limsuc |
|- ( Lim A -> ( y e. A <-> suc y e. A ) ) |
| 14 |
3 13
|
syl |
|- ( A e. InaccW -> ( y e. A <-> suc y e. A ) ) |
| 15 |
|
r1ord2 |
|- ( A e. On -> ( suc y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
| 16 |
2 15
|
syl |
|- ( A e. InaccW -> ( suc y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
| 17 |
14 16
|
sylbid |
|- ( A e. InaccW -> ( y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
| 18 |
17
|
imp |
|- ( ( A e. InaccW /\ y e. A ) -> ( R1 ` suc y ) C_ ( R1 ` A ) ) |
| 19 |
18
|
sseld |
|- ( ( A e. InaccW /\ y e. A ) -> ( ~P x e. ( R1 ` suc y ) -> ~P x e. ( R1 ` A ) ) ) |
| 20 |
12 19
|
sylbid |
|- ( ( A e. InaccW /\ y e. A ) -> ( x e. ( R1 ` y ) -> ~P x e. ( R1 ` A ) ) ) |
| 21 |
20
|
rexlimdva |
|- ( A e. InaccW -> ( E. y e. A x e. ( R1 ` y ) -> ~P x e. ( R1 ` A ) ) ) |
| 22 |
8 21
|
sylbid |
|- ( A e. InaccW -> ( x e. ( R1 ` A ) -> ~P x e. ( R1 ` A ) ) ) |
| 23 |
1 22
|
syl |
|- ( A e. Inacc -> ( x e. ( R1 ` A ) -> ~P x e. ( R1 ` A ) ) ) |
| 24 |
23
|
imp |
|- ( ( A e. Inacc /\ x e. ( R1 ` A ) ) -> ~P x e. ( R1 ` A ) ) |
| 25 |
|
elssuni |
|- ( ~P x e. ( R1 ` A ) -> ~P x C_ U. ( R1 ` A ) ) |
| 26 |
|
r1tr2 |
|- U. ( R1 ` A ) C_ ( R1 ` A ) |
| 27 |
25 26
|
sstrdi |
|- ( ~P x e. ( R1 ` A ) -> ~P x C_ ( R1 ` A ) ) |
| 28 |
24 27
|
jccil |
|- ( ( A e. Inacc /\ x e. ( R1 ` A ) ) -> ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) ) |
| 29 |
28
|
ralrimiva |
|- ( A e. Inacc -> A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) ) |
| 30 |
1 2
|
syl |
|- ( A e. Inacc -> A e. On ) |
| 31 |
|
r1suc |
|- ( A e. On -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 32 |
31
|
eleq2d |
|- ( A e. On -> ( x e. ( R1 ` suc A ) <-> x e. ~P ( R1 ` A ) ) ) |
| 33 |
30 32
|
syl |
|- ( A e. Inacc -> ( x e. ( R1 ` suc A ) <-> x e. ~P ( R1 ` A ) ) ) |
| 34 |
|
rankr1ai |
|- ( x e. ( R1 ` suc A ) -> ( rank ` x ) e. suc A ) |
| 35 |
33 34
|
biimtrrdi |
|- ( A e. Inacc -> ( x e. ~P ( R1 ` A ) -> ( rank ` x ) e. suc A ) ) |
| 36 |
35
|
imp |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( rank ` x ) e. suc A ) |
| 37 |
|
fvex |
|- ( rank ` x ) e. _V |
| 38 |
37
|
elsuc |
|- ( ( rank ` x ) e. suc A <-> ( ( rank ` x ) e. A \/ ( rank ` x ) = A ) ) |
| 39 |
36 38
|
sylib |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) e. A \/ ( rank ` x ) = A ) ) |
| 40 |
39
|
orcomd |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) = A \/ ( rank ` x ) e. A ) ) |
| 41 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 42 |
|
elpwi |
|- ( x e. ~P ( R1 ` A ) -> x C_ ( R1 ` A ) ) |
| 43 |
42
|
ad2antlr |
|- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x C_ ( R1 ` A ) ) |
| 44 |
|
ssdomg |
|- ( ( R1 ` A ) e. _V -> ( x C_ ( R1 ` A ) -> x ~<_ ( R1 ` A ) ) ) |
| 45 |
41 43 44
|
mpsyl |
|- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x ~<_ ( R1 ` A ) ) |
| 46 |
|
rankcf |
|- -. x ~< ( cf ` ( rank ` x ) ) |
| 47 |
|
fveq2 |
|- ( ( rank ` x ) = A -> ( cf ` ( rank ` x ) ) = ( cf ` A ) ) |
| 48 |
|
elina |
|- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |
| 49 |
48
|
simp2bi |
|- ( A e. Inacc -> ( cf ` A ) = A ) |
| 50 |
47 49
|
sylan9eqr |
|- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( cf ` ( rank ` x ) ) = A ) |
| 51 |
50
|
breq2d |
|- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( x ~< ( cf ` ( rank ` x ) ) <-> x ~< A ) ) |
| 52 |
46 51
|
mtbii |
|- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> -. x ~< A ) |
| 53 |
|
inar1 |
|- ( A e. Inacc -> ( R1 ` A ) ~~ A ) |
| 54 |
|
sdomentr |
|- ( ( x ~< ( R1 ` A ) /\ ( R1 ` A ) ~~ A ) -> x ~< A ) |
| 55 |
54
|
expcom |
|- ( ( R1 ` A ) ~~ A -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 56 |
53 55
|
syl |
|- ( A e. Inacc -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 57 |
56
|
adantr |
|- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 58 |
52 57
|
mtod |
|- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> -. x ~< ( R1 ` A ) ) |
| 59 |
58
|
adantlr |
|- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> -. x ~< ( R1 ` A ) ) |
| 60 |
|
bren2 |
|- ( x ~~ ( R1 ` A ) <-> ( x ~<_ ( R1 ` A ) /\ -. x ~< ( R1 ` A ) ) ) |
| 61 |
45 59 60
|
sylanbrc |
|- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x ~~ ( R1 ` A ) ) |
| 62 |
61
|
ex |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) = A -> x ~~ ( R1 ` A ) ) ) |
| 63 |
|
r1elwf |
|- ( x e. ( R1 ` suc A ) -> x e. U. ( R1 " On ) ) |
| 64 |
33 63
|
biimtrrdi |
|- ( A e. Inacc -> ( x e. ~P ( R1 ` A ) -> x e. U. ( R1 " On ) ) ) |
| 65 |
64
|
imp |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> x e. U. ( R1 " On ) ) |
| 66 |
|
r1fnon |
|- R1 Fn On |
| 67 |
66
|
fndmi |
|- dom R1 = On |
| 68 |
30 67
|
eleqtrrdi |
|- ( A e. Inacc -> A e. dom R1 ) |
| 69 |
68
|
adantr |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> A e. dom R1 ) |
| 70 |
|
rankr1ag |
|- ( ( x e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 71 |
65 69 70
|
syl2anc |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 72 |
71
|
biimprd |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) e. A -> x e. ( R1 ` A ) ) ) |
| 73 |
62 72
|
orim12d |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( ( rank ` x ) = A \/ ( rank ` x ) e. A ) -> ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) |
| 74 |
40 73
|
mpd |
|- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) |
| 75 |
74
|
ralrimiva |
|- ( A e. Inacc -> A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) |
| 76 |
|
eltsk2g |
|- ( ( R1 ` A ) e. _V -> ( ( R1 ` A ) e. Tarski <-> ( A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) /\ A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) ) |
| 77 |
41 76
|
ax-mp |
|- ( ( R1 ` A ) e. Tarski <-> ( A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) /\ A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) |
| 78 |
29 75 77
|
sylanbrc |
|- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |