| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cfon |  |-  ( cf ` A ) e. On | 
						
							| 2 |  | eleq1 |  |-  ( ( cf ` A ) = A -> ( ( cf ` A ) e. On <-> A e. On ) ) | 
						
							| 3 | 1 2 | mpbii |  |-  ( ( cf ` A ) = A -> A e. On ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> A e. On ) | 
						
							| 5 |  | idd |  |-  ( A e. On -> ( A =/= (/) -> A =/= (/) ) ) | 
						
							| 6 |  | idd |  |-  ( A e. On -> ( ( cf ` A ) = A -> ( cf ` A ) = A ) ) | 
						
							| 7 |  | inawinalem |  |-  ( A e. On -> ( A. x e. A ~P x ~< A -> A. x e. A E. y e. A x ~< y ) ) | 
						
							| 8 | 5 6 7 | 3anim123d |  |-  ( A e. On -> ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) ) | 
						
							| 9 | 4 8 | mpcom |  |-  ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) | 
						
							| 10 |  | elina |  |-  ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) | 
						
							| 11 |  | elwina |  |-  ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) | 
						
							| 12 | 9 10 11 | 3imtr4i |  |-  ( A e. Inacc -> A e. InaccW ) |