| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unifi |
|- ( ( A e. Fin /\ A C_ Fin ) -> U. A e. Fin ) |
| 2 |
|
hashcl |
|- ( U. A e. Fin -> ( # ` U. A ) e. NN0 ) |
| 3 |
2
|
nn0cnd |
|- ( U. A e. Fin -> ( # ` U. A ) e. CC ) |
| 4 |
1 3
|
syl |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) e. CC ) |
| 5 |
|
simpl |
|- ( ( A e. Fin /\ A C_ Fin ) -> A e. Fin ) |
| 6 |
|
pwfi |
|- ( A e. Fin <-> ~P A e. Fin ) |
| 7 |
5 6
|
sylib |
|- ( ( A e. Fin /\ A C_ Fin ) -> ~P A e. Fin ) |
| 8 |
|
diffi |
|- ( ~P A e. Fin -> ( ~P A \ { (/) } ) e. Fin ) |
| 9 |
7 8
|
syl |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ~P A \ { (/) } ) e. Fin ) |
| 10 |
|
1cnd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> 1 e. CC ) |
| 11 |
10
|
negcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> -u 1 e. CC ) |
| 12 |
|
eldifsni |
|- ( s e. ( ~P A \ { (/) } ) -> s =/= (/) ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s =/= (/) ) |
| 14 |
|
eldifi |
|- ( s e. ( ~P A \ { (/) } ) -> s e. ~P A ) |
| 15 |
|
elpwi |
|- ( s e. ~P A -> s C_ A ) |
| 16 |
14 15
|
syl |
|- ( s e. ( ~P A \ { (/) } ) -> s C_ A ) |
| 17 |
|
ssfi |
|- ( ( A e. Fin /\ s C_ A ) -> s e. Fin ) |
| 18 |
5 16 17
|
syl2an |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s e. Fin ) |
| 19 |
|
hashnncl |
|- ( s e. Fin -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) |
| 20 |
18 19
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( # ` s ) e. NN <-> s =/= (/) ) ) |
| 21 |
13 20
|
mpbird |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` s ) e. NN ) |
| 22 |
|
nnm1nn0 |
|- ( ( # ` s ) e. NN -> ( ( # ` s ) - 1 ) e. NN0 ) |
| 23 |
21 22
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( # ` s ) - 1 ) e. NN0 ) |
| 24 |
11 23
|
expcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( ( # ` s ) - 1 ) ) e. CC ) |
| 25 |
16
|
adantl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s C_ A ) |
| 26 |
|
simplr |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> A C_ Fin ) |
| 27 |
25 26
|
sstrd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> s C_ Fin ) |
| 28 |
|
unifi |
|- ( ( s e. Fin /\ s C_ Fin ) -> U. s e. Fin ) |
| 29 |
18 27 28
|
syl2anc |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> U. s e. Fin ) |
| 30 |
|
intssuni |
|- ( s =/= (/) -> |^| s C_ U. s ) |
| 31 |
13 30
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s C_ U. s ) |
| 32 |
29 31
|
ssfid |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s e. Fin ) |
| 33 |
|
hashcl |
|- ( |^| s e. Fin -> ( # ` |^| s ) e. NN0 ) |
| 34 |
32 33
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` |^| s ) e. NN0 ) |
| 35 |
34
|
nn0cnd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` |^| s ) e. CC ) |
| 36 |
24 35
|
mulcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) |
| 37 |
9 36
|
fsumcl |
|- ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) e. CC ) |
| 38 |
|
disjdif |
|- ( { (/) } i^i ( ~P A \ { (/) } ) ) = (/) |
| 39 |
38
|
a1i |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( { (/) } i^i ( ~P A \ { (/) } ) ) = (/) ) |
| 40 |
|
0elpw |
|- (/) e. ~P A |
| 41 |
|
snssi |
|- ( (/) e. ~P A -> { (/) } C_ ~P A ) |
| 42 |
40 41
|
ax-mp |
|- { (/) } C_ ~P A |
| 43 |
|
undif |
|- ( { (/) } C_ ~P A <-> ( { (/) } u. ( ~P A \ { (/) } ) ) = ~P A ) |
| 44 |
42 43
|
mpbi |
|- ( { (/) } u. ( ~P A \ { (/) } ) ) = ~P A |
| 45 |
44
|
eqcomi |
|- ~P A = ( { (/) } u. ( ~P A \ { (/) } ) ) |
| 46 |
45
|
a1i |
|- ( ( A e. Fin /\ A C_ Fin ) -> ~P A = ( { (/) } u. ( ~P A \ { (/) } ) ) ) |
| 47 |
|
1cnd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> 1 e. CC ) |
| 48 |
47
|
negcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> -u 1 e. CC ) |
| 49 |
5 15 17
|
syl2an |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> s e. Fin ) |
| 50 |
|
hashcl |
|- ( s e. Fin -> ( # ` s ) e. NN0 ) |
| 51 |
49 50
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` s ) e. NN0 ) |
| 52 |
48 51
|
expcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( -u 1 ^ ( # ` s ) ) e. CC ) |
| 53 |
1
|
adantr |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> U. A e. Fin ) |
| 54 |
|
inss1 |
|- ( U. A i^i |^| s ) C_ U. A |
| 55 |
|
ssfi |
|- ( ( U. A e. Fin /\ ( U. A i^i |^| s ) C_ U. A ) -> ( U. A i^i |^| s ) e. Fin ) |
| 56 |
53 54 55
|
sylancl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( U. A i^i |^| s ) e. Fin ) |
| 57 |
|
hashcl |
|- ( ( U. A i^i |^| s ) e. Fin -> ( # ` ( U. A i^i |^| s ) ) e. NN0 ) |
| 58 |
56 57
|
syl |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` ( U. A i^i |^| s ) ) e. NN0 ) |
| 59 |
58
|
nn0cnd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( # ` ( U. A i^i |^| s ) ) e. CC ) |
| 60 |
52 59
|
mulcld |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ~P A ) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) e. CC ) |
| 61 |
39 46 7 60
|
fsumsplit |
|- ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) |
| 62 |
|
inidm |
|- ( U. A i^i U. A ) = U. A |
| 63 |
62
|
fveq2i |
|- ( # ` ( U. A i^i U. A ) ) = ( # ` U. A ) |
| 64 |
63
|
oveq2i |
|- ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = ( ( # ` U. A ) - ( # ` U. A ) ) |
| 65 |
4
|
subidd |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` U. A ) ) = 0 ) |
| 66 |
64 65
|
eqtrid |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = 0 ) |
| 67 |
|
incexclem |
|- ( ( A e. Fin /\ U. A e. Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 68 |
1 67
|
syldan |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - ( # ` ( U. A i^i U. A ) ) ) = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 69 |
66 68
|
eqtr3d |
|- ( ( A e. Fin /\ A C_ Fin ) -> 0 = sum_ s e. ~P A ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 70 |
4 37
|
negsubd |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) + -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) ) |
| 71 |
|
0ex |
|- (/) e. _V |
| 72 |
|
1cnd |
|- ( ( A e. Fin /\ A C_ Fin ) -> 1 e. CC ) |
| 73 |
72 4
|
mulcld |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( 1 x. ( # ` U. A ) ) e. CC ) |
| 74 |
|
fveq2 |
|- ( s = (/) -> ( # ` s ) = ( # ` (/) ) ) |
| 75 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 76 |
74 75
|
eqtrdi |
|- ( s = (/) -> ( # ` s ) = 0 ) |
| 77 |
76
|
oveq2d |
|- ( s = (/) -> ( -u 1 ^ ( # ` s ) ) = ( -u 1 ^ 0 ) ) |
| 78 |
|
neg1cn |
|- -u 1 e. CC |
| 79 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 80 |
78 79
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 81 |
77 80
|
eqtrdi |
|- ( s = (/) -> ( -u 1 ^ ( # ` s ) ) = 1 ) |
| 82 |
|
rint0 |
|- ( s = (/) -> ( U. A i^i |^| s ) = U. A ) |
| 83 |
82
|
fveq2d |
|- ( s = (/) -> ( # ` ( U. A i^i |^| s ) ) = ( # ` U. A ) ) |
| 84 |
81 83
|
oveq12d |
|- ( s = (/) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) |
| 85 |
84
|
sumsn |
|- ( ( (/) e. _V /\ ( 1 x. ( # ` U. A ) ) e. CC ) -> sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) |
| 86 |
71 73 85
|
sylancr |
|- ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( 1 x. ( # ` U. A ) ) ) |
| 87 |
4
|
mullidd |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( 1 x. ( # ` U. A ) ) = ( # ` U. A ) ) |
| 88 |
86 87
|
eqtr2d |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 89 |
9 36
|
fsumneg |
|- ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) |
| 90 |
|
expm1t |
|- ( ( -u 1 e. CC /\ ( # ` s ) e. NN ) -> ( -u 1 ^ ( # ` s ) ) = ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) ) |
| 91 |
11 21 90
|
syl2anc |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( # ` s ) ) = ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) ) |
| 92 |
24 11
|
mulcomd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. -u 1 ) = ( -u 1 x. ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) ) |
| 93 |
24
|
mulm1d |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 x. ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) = -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) |
| 94 |
91 92 93
|
3eqtrd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u 1 ^ ( # ` s ) ) = -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) ) |
| 95 |
25
|
unissd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> U. s C_ U. A ) |
| 96 |
31 95
|
sstrd |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> |^| s C_ U. A ) |
| 97 |
|
sseqin2 |
|- ( |^| s C_ U. A <-> ( U. A i^i |^| s ) = |^| s ) |
| 98 |
96 97
|
sylib |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( U. A i^i |^| s ) = |^| s ) |
| 99 |
98
|
fveq2d |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( # ` ( U. A i^i |^| s ) ) = ( # ` |^| s ) ) |
| 100 |
94 99
|
oveq12d |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) = ( -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) |
| 101 |
24 35
|
mulneg1d |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> ( -u ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) |
| 102 |
100 101
|
eqtr2d |
|- ( ( ( A e. Fin /\ A C_ Fin ) /\ s e. ( ~P A \ { (/) } ) ) -> -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 103 |
102
|
sumeq2dv |
|- ( ( A e. Fin /\ A C_ Fin ) -> sum_ s e. ( ~P A \ { (/) } ) -u ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 104 |
89 103
|
eqtr3d |
|- ( ( A e. Fin /\ A C_ Fin ) -> -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) |
| 105 |
88 104
|
oveq12d |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) + -u sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) |
| 106 |
70 105
|
eqtr3d |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = ( sum_ s e. { (/) } ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) + sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( # ` s ) ) x. ( # ` ( U. A i^i |^| s ) ) ) ) ) |
| 107 |
61 69 106
|
3eqtr4rd |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( ( # ` U. A ) - sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) = 0 ) |
| 108 |
4 37 107
|
subeq0d |
|- ( ( A e. Fin /\ A C_ Fin ) -> ( # ` U. A ) = sum_ s e. ( ~P A \ { (/) } ) ( ( -u 1 ^ ( ( # ` s ) - 1 ) ) x. ( # ` |^| s ) ) ) |