Step |
Hyp |
Ref |
Expression |
1 |
|
intprg |
|- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> |^| { A , B } = ( A i^i B ) ) |
2 |
|
prnzg |
|- ( A e. ( Clsd ` J ) -> { A , B } =/= (/) ) |
3 |
|
prssi |
|- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> { A , B } C_ ( Clsd ` J ) ) |
4 |
|
intcld |
|- ( ( { A , B } =/= (/) /\ { A , B } C_ ( Clsd ` J ) ) -> |^| { A , B } e. ( Clsd ` J ) ) |
5 |
2 3 4
|
syl2an2r |
|- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> |^| { A , B } e. ( Clsd ` J ) ) |
6 |
1 5
|
eqeltrrd |
|- ( ( A e. ( Clsd ` J ) /\ B e. ( Clsd ` J ) ) -> ( A i^i B ) e. ( Clsd ` J ) ) |