Metamath Proof Explorer


Theorem incomOLD

Description: Obsolete version of incom as of 12-Dec-2023. Commutative law for intersection of classes. Exercise 7 of TakeutiZaring p. 17. (Contributed by NM, 21-Jun-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion incomOLD
|- ( A i^i B ) = ( B i^i A )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( x e. A /\ x e. B ) <-> ( x e. B /\ x e. A ) )
2 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
3 elin
 |-  ( x e. ( B i^i A ) <-> ( x e. B /\ x e. A ) )
4 1 2 3 3bitr4i
 |-  ( x e. ( A i^i B ) <-> x e. ( B i^i A ) )
5 4 eqriv
 |-  ( A i^i B ) = ( B i^i A )