Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
2 |
1
|
sseq2d |
|- ( a = A -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` A ) ) ) |
3 |
2
|
imbi2d |
|- ( a = A -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` A ) ) ) ) |
4 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
5 |
4
|
sseq2d |
|- ( a = b -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` b ) ) ) |
6 |
5
|
imbi2d |
|- ( a = b -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` b ) ) ) ) |
7 |
|
fveq2 |
|- ( a = ( b + 1 ) -> ( F ` a ) = ( F ` ( b + 1 ) ) ) |
8 |
7
|
sseq2d |
|- ( a = ( b + 1 ) -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
9 |
8
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
10 |
|
fveq2 |
|- ( a = B -> ( F ` a ) = ( F ` B ) ) |
11 |
10
|
sseq2d |
|- ( a = B -> ( ( F ` A ) C_ ( F ` a ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
12 |
11
|
imbi2d |
|- ( a = B -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` a ) ) <-> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` B ) ) ) ) |
13 |
|
ssid |
|- ( F ` A ) C_ ( F ` A ) |
14 |
13
|
2a1i |
|- ( A e. ZZ -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` A ) ) ) |
15 |
|
eluznn0 |
|- ( ( A e. NN0 /\ b e. ( ZZ>= ` A ) ) -> b e. NN0 ) |
16 |
15
|
ancoms |
|- ( ( b e. ( ZZ>= ` A ) /\ A e. NN0 ) -> b e. NN0 ) |
17 |
|
fveq2 |
|- ( x = b -> ( F ` x ) = ( F ` b ) ) |
18 |
|
fvoveq1 |
|- ( x = b -> ( F ` ( x + 1 ) ) = ( F ` ( b + 1 ) ) ) |
19 |
17 18
|
sseq12d |
|- ( x = b -> ( ( F ` x ) C_ ( F ` ( x + 1 ) ) <-> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
20 |
19
|
rspcv |
|- ( b e. NN0 -> ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
21 |
16 20
|
syl |
|- ( ( b e. ( ZZ>= ` A ) /\ A e. NN0 ) -> ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
22 |
21
|
expimpd |
|- ( b e. ( ZZ>= ` A ) -> ( ( A e. NN0 /\ A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
23 |
22
|
ancomsd |
|- ( b e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` b ) C_ ( F ` ( b + 1 ) ) ) ) |
24 |
|
sstr2 |
|- ( ( F ` A ) C_ ( F ` b ) -> ( ( F ` b ) C_ ( F ` ( b + 1 ) ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
25 |
24
|
com12 |
|- ( ( F ` b ) C_ ( F ` ( b + 1 ) ) -> ( ( F ` A ) C_ ( F ` b ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) |
26 |
23 25
|
syl6 |
|- ( b e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( ( F ` A ) C_ ( F ` b ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
27 |
26
|
a2d |
|- ( b e. ( ZZ>= ` A ) -> ( ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` b ) ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` ( b + 1 ) ) ) ) ) |
28 |
3 6 9 12 14 27
|
uzind4 |
|- ( B e. ( ZZ>= ` A ) -> ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( F ` A ) C_ ( F ` B ) ) ) |
29 |
28
|
com12 |
|- ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 ) -> ( B e. ( ZZ>= ` A ) -> ( F ` A ) C_ ( F ` B ) ) ) |
30 |
29
|
3impia |
|- ( ( A. x e. NN0 ( F ` x ) C_ ( F ` ( x + 1 ) ) /\ A e. NN0 /\ B e. ( ZZ>= ` A ) ) -> ( F ` A ) C_ ( F ` B ) ) |