Step |
Hyp |
Ref |
Expression |
1 |
|
indcardi.a |
|- ( ph -> A e. V ) |
2 |
|
indcardi.b |
|- ( ph -> T e. dom card ) |
3 |
|
indcardi.c |
|- ( ( ph /\ R ~<_ T /\ A. y ( S ~< R -> ch ) ) -> ps ) |
4 |
|
indcardi.d |
|- ( x = y -> ( ps <-> ch ) ) |
5 |
|
indcardi.e |
|- ( x = A -> ( ps <-> th ) ) |
6 |
|
indcardi.f |
|- ( x = y -> R = S ) |
7 |
|
indcardi.g |
|- ( x = A -> R = T ) |
8 |
|
domrefg |
|- ( T e. dom card -> T ~<_ T ) |
9 |
2 8
|
syl |
|- ( ph -> T ~<_ T ) |
10 |
|
cardon |
|- ( card ` T ) e. On |
11 |
10
|
a1i |
|- ( ph -> ( card ` T ) e. On ) |
12 |
|
simpl1 |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> ph ) |
13 |
|
simpr |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> R ~<_ T ) |
14 |
|
simpr |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S ~< R ) |
15 |
|
simpl1 |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ph ) |
16 |
15 2
|
syl |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> T e. dom card ) |
17 |
|
sdomdom |
|- ( S ~< R -> S ~<_ R ) |
18 |
|
simpl3 |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> R ~<_ T ) |
19 |
|
domtr |
|- ( ( S ~<_ R /\ R ~<_ T ) -> S ~<_ T ) |
20 |
17 18 19
|
syl2an2 |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S ~<_ T ) |
21 |
|
numdom |
|- ( ( T e. dom card /\ S ~<_ T ) -> S e. dom card ) |
22 |
16 20 21
|
syl2anc |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S e. dom card ) |
23 |
|
numdom |
|- ( ( T e. dom card /\ R ~<_ T ) -> R e. dom card ) |
24 |
16 18 23
|
syl2anc |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> R e. dom card ) |
25 |
|
cardsdom2 |
|- ( ( S e. dom card /\ R e. dom card ) -> ( ( card ` S ) e. ( card ` R ) <-> S ~< R ) ) |
26 |
22 24 25
|
syl2anc |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( ( card ` S ) e. ( card ` R ) <-> S ~< R ) ) |
27 |
14 26
|
mpbird |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( card ` S ) e. ( card ` R ) ) |
28 |
|
id |
|- ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) |
29 |
28
|
com3l |
|- ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) ) |
30 |
27 20 29
|
sylc |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) |
31 |
30
|
ex |
|- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( S ~< R -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) ) |
32 |
31
|
com23 |
|- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( S ~< R -> ch ) ) ) |
33 |
32
|
alimdv |
|- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> A. y ( S ~< R -> ch ) ) ) |
34 |
33
|
3exp |
|- ( ph -> ( ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) -> ( R ~<_ T -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> A. y ( S ~< R -> ch ) ) ) ) ) |
35 |
34
|
com34 |
|- ( ph -> ( ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( R ~<_ T -> A. y ( S ~< R -> ch ) ) ) ) ) |
36 |
35
|
3imp1 |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> A. y ( S ~< R -> ch ) ) |
37 |
12 13 36 3
|
syl3anc |
|- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> ps ) |
38 |
37
|
ex |
|- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) -> ( R ~<_ T -> ps ) ) |
39 |
6
|
breq1d |
|- ( x = y -> ( R ~<_ T <-> S ~<_ T ) ) |
40 |
39 4
|
imbi12d |
|- ( x = y -> ( ( R ~<_ T -> ps ) <-> ( S ~<_ T -> ch ) ) ) |
41 |
7
|
breq1d |
|- ( x = A -> ( R ~<_ T <-> T ~<_ T ) ) |
42 |
41 5
|
imbi12d |
|- ( x = A -> ( ( R ~<_ T -> ps ) <-> ( T ~<_ T -> th ) ) ) |
43 |
6
|
fveq2d |
|- ( x = y -> ( card ` R ) = ( card ` S ) ) |
44 |
7
|
fveq2d |
|- ( x = A -> ( card ` R ) = ( card ` T ) ) |
45 |
1 11 38 40 42 43 44
|
tfisi |
|- ( ph -> ( T ~<_ T -> th ) ) |
46 |
9 45
|
mpd |
|- ( ph -> th ) |