Description: Intersection with class difference. Theorem 34 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indif | |- ( A i^i ( A \ B ) ) = ( A \ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfin4 | |- ( A i^i ( A \ B ) ) = ( A \ ( A \ ( A \ B ) ) ) | |
| 2 | dfin4 | |- ( A i^i B ) = ( A \ ( A \ B ) ) | |
| 3 | 2 | difeq2i | |- ( A \ ( A i^i B ) ) = ( A \ ( A \ ( A \ B ) ) ) | 
| 4 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) | |
| 5 | 1 3 4 | 3eqtr2i | |- ( A i^i ( A \ B ) ) = ( A \ B ) |