Metamath Proof Explorer


Theorem indif

Description: Intersection with class difference. Theorem 34 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion indif
|- ( A i^i ( A \ B ) ) = ( A \ B )

Proof

Step Hyp Ref Expression
1 dfin4
 |-  ( A i^i ( A \ B ) ) = ( A \ ( A \ ( A \ B ) ) )
2 dfin4
 |-  ( A i^i B ) = ( A \ ( A \ B ) )
3 2 difeq2i
 |-  ( A \ ( A i^i B ) ) = ( A \ ( A \ ( A \ B ) ) )
4 difin
 |-  ( A \ ( A i^i B ) ) = ( A \ B )
5 1 3 4 3eqtr2i
 |-  ( A i^i ( A \ B ) ) = ( A \ B )