Description: Intersection with class difference. Theorem 34 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | indif | |- ( A i^i ( A \ B ) ) = ( A \ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin4 | |- ( A i^i ( A \ B ) ) = ( A \ ( A \ ( A \ B ) ) ) |
|
2 | dfin4 | |- ( A i^i B ) = ( A \ ( A \ B ) ) |
|
3 | 2 | difeq2i | |- ( A \ ( A i^i B ) ) = ( A \ ( A \ ( A \ B ) ) ) |
4 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) |
|
5 | 1 3 4 | 3eqtr2i | |- ( A i^i ( A \ B ) ) = ( A \ B ) |