Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indif1 | |- ( ( A \ C ) i^i B ) = ( ( A i^i B ) \ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 | |- ( B i^i ( A \ C ) ) = ( ( B i^i A ) \ C ) |
|
2 | incom | |- ( B i^i ( A \ C ) ) = ( ( A \ C ) i^i B ) |
|
3 | incom | |- ( B i^i A ) = ( A i^i B ) |
|
4 | 3 | difeq1i | |- ( ( B i^i A ) \ C ) = ( ( A i^i B ) \ C ) |
5 | 1 2 4 | 3eqtr3i | |- ( ( A \ C ) i^i B ) = ( ( A i^i B ) \ C ) |