Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | indif2 | |- ( A i^i ( B \ C ) ) = ( ( A i^i B ) \ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass | |- ( ( A i^i B ) i^i ( _V \ C ) ) = ( A i^i ( B i^i ( _V \ C ) ) ) |
|
2 | invdif | |- ( ( A i^i B ) i^i ( _V \ C ) ) = ( ( A i^i B ) \ C ) |
|
3 | invdif | |- ( B i^i ( _V \ C ) ) = ( B \ C ) |
|
4 | 3 | ineq2i | |- ( A i^i ( B i^i ( _V \ C ) ) ) = ( A i^i ( B \ C ) ) |
5 | 1 2 4 | 3eqtr3ri | |- ( A i^i ( B \ C ) ) = ( ( A i^i B ) \ C ) |