| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 2 |
|
inss1 |
|- ( A i^i C ) C_ A |
| 3 |
|
rcompleq |
|- ( ( ( A i^i B ) C_ A /\ ( A i^i C ) C_ A ) -> ( ( A i^i B ) = ( A i^i C ) <-> ( A \ ( A i^i B ) ) = ( A \ ( A i^i C ) ) ) ) |
| 4 |
1 2 3
|
mp2an |
|- ( ( A i^i B ) = ( A i^i C ) <-> ( A \ ( A i^i B ) ) = ( A \ ( A i^i C ) ) ) |
| 5 |
|
difin |
|- ( A \ ( A i^i B ) ) = ( A \ B ) |
| 6 |
|
difin |
|- ( A \ ( A i^i C ) ) = ( A \ C ) |
| 7 |
5 6
|
eqeq12i |
|- ( ( A \ ( A i^i B ) ) = ( A \ ( A i^i C ) ) <-> ( A \ B ) = ( A \ C ) ) |
| 8 |
4 7
|
bitri |
|- ( ( A i^i B ) = ( A i^i C ) <-> ( A \ B ) = ( A \ C ) ) |