Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | indifcom | |- ( A i^i ( B \ C ) ) = ( B i^i ( A \ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
2 | 1 | difeq1i | |- ( ( A i^i B ) \ C ) = ( ( B i^i A ) \ C ) |
3 | indif2 | |- ( A i^i ( B \ C ) ) = ( ( A i^i B ) \ C ) |
|
4 | indif2 | |- ( B i^i ( A \ C ) ) = ( ( B i^i A ) \ C ) |
|
5 | 2 3 4 | 3eqtr4i | |- ( A i^i ( B \ C ) ) = ( B i^i ( A \ C ) ) |