Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indisconn | |- { (/) , A } e. Conn | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indistop |  |-  { (/) , A } e. Top | |
| 2 | inss1 |  |-  ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , A } | |
| 3 | indislem |  |-  { (/) , ( _I ` A ) } = { (/) , A } | |
| 4 | 2 3 | sseqtrri |  |-  ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) } | 
| 5 | indisuni |  |-  ( _I ` A ) = U. { (/) , A } | |
| 6 | 5 | isconn2 |  |-  ( { (/) , A } e. Conn <-> ( { (/) , A } e. Top /\ ( { (/) , A } i^i ( Clsd ` { (/) , A } ) ) C_ { (/) , ( _I ` A ) } ) ) | 
| 7 | 1 4 6 | mpbir2an |  |-  { (/) , A } e. Conn |