Metamath Proof Explorer


Theorem indislem

Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indislem
|- { (/) , ( _I ` A ) } = { (/) , A }

Proof

Step Hyp Ref Expression
1 fvi
 |-  ( A e. _V -> ( _I ` A ) = A )
2 1 preq2d
 |-  ( A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } )
3 dfsn2
 |-  { (/) } = { (/) , (/) }
4 3 eqcomi
 |-  { (/) , (/) } = { (/) }
5 fvprc
 |-  ( -. A e. _V -> ( _I ` A ) = (/) )
6 5 preq2d
 |-  ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , (/) } )
7 prprc2
 |-  ( -. A e. _V -> { (/) , A } = { (/) } )
8 4 6 7 3eqtr4a
 |-  ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } )
9 2 8 pm2.61i
 |-  { (/) , ( _I ` A ) } = { (/) , A }