Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvi | |- ( A e. _V -> ( _I ` A ) = A ) | |
| 2 | 1 | preq2d |  |-  ( A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } ) | 
| 3 | dfsn2 |  |-  { (/) } = { (/) , (/) } | |
| 4 | 3 | eqcomi |  |-  { (/) , (/) } = { (/) } | 
| 5 | fvprc | |- ( -. A e. _V -> ( _I ` A ) = (/) ) | |
| 6 | 5 | preq2d |  |-  ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , (/) } ) | 
| 7 | prprc2 |  |-  ( -. A e. _V -> { (/) , A } = { (/) } ) | |
| 8 | 4 6 7 | 3eqtr4a |  |-  ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } ) | 
| 9 | 2 8 | pm2.61i |  |-  { (/) , ( _I ` A ) } = { (/) , A } |