Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi | |- ( A e. _V -> ( _I ` A ) = A ) |
|
2 | 1 | preq2d | |- ( A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } ) |
3 | dfsn2 | |- { (/) } = { (/) , (/) } |
|
4 | 3 | eqcomi | |- { (/) , (/) } = { (/) } |
5 | fvprc | |- ( -. A e. _V -> ( _I ` A ) = (/) ) |
|
6 | 5 | preq2d | |- ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , (/) } ) |
7 | prprc2 | |- ( -. A e. _V -> { (/) , A } = { (/) } ) |
|
8 | 4 6 7 | 3eqtr4a | |- ( -. A e. _V -> { (/) , ( _I ` A ) } = { (/) , A } ) |
9 | 2 8 | pm2.61i | |- { (/) , ( _I ` A ) } = { (/) , A } |