Description: The indiscrete topology on a set A expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 from the structural version indistps . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indistps2ALT.a | |- ( Base ` K ) = A |
|
indistps2ALT.j | |- ( TopOpen ` K ) = { (/) , A } |
||
Assertion | indistps2ALT | |- K e. TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2ALT.a | |- ( Base ` K ) = A |
|
2 | indistps2ALT.j | |- ( TopOpen ` K ) = { (/) , A } |
|
3 | fvex | |- ( Base ` K ) e. _V |
|
4 | 1 3 | eqeltrri | |- A e. _V |
5 | indistopon | |- ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) |
|
6 | 4 5 | ax-mp | |- { (/) , A } e. ( TopOn ` A ) |
7 | 1 | eqcomi | |- A = ( Base ` K ) |
8 | 2 | eqcomi | |- { (/) , A } = ( TopOpen ` K ) |
9 | 7 8 | istps | |- ( K e. TopSp <-> { (/) , A } e. ( TopOn ` A ) ) |
10 | 6 9 | mpbir | |- K e. TopSp |