Metamath Proof Explorer


Theorem indistps2ALT

Description: The indiscrete topology on a set A expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 from the structural version indistps . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses indistps2ALT.a
|- ( Base ` K ) = A
indistps2ALT.j
|- ( TopOpen ` K ) = { (/) , A }
Assertion indistps2ALT
|- K e. TopSp

Proof

Step Hyp Ref Expression
1 indistps2ALT.a
 |-  ( Base ` K ) = A
2 indistps2ALT.j
 |-  ( TopOpen ` K ) = { (/) , A }
3 fvex
 |-  ( Base ` K ) e. _V
4 1 3 eqeltrri
 |-  A e. _V
5 indistopon
 |-  ( A e. _V -> { (/) , A } e. ( TopOn ` A ) )
6 4 5 ax-mp
 |-  { (/) , A } e. ( TopOn ` A )
7 1 eqcomi
 |-  A = ( Base ` K )
8 2 eqcomi
 |-  { (/) , A } = ( TopOpen ` K )
9 7 8 istps
 |-  ( K e. TopSp <-> { (/) , A } e. ( TopOn ` A ) )
10 6 9 mpbir
 |-  K e. TopSp