Step |
Hyp |
Ref |
Expression |
1 |
|
indistpsALT.a |
|- A e. _V |
2 |
|
indistpsALT.k |
|- K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , { (/) , A } >. } |
3 |
|
indistopon |
|- ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) |
4 |
|
basendxlttsetndx |
|- ( Base ` ndx ) < ( TopSet ` ndx ) |
5 |
|
tsetndxnn |
|- ( TopSet ` ndx ) e. NN |
6 |
2 4 5
|
2strbas1 |
|- ( A e. _V -> A = ( Base ` K ) ) |
7 |
1 6
|
ax-mp |
|- A = ( Base ` K ) |
8 |
|
prex |
|- { (/) , A } e. _V |
9 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
10 |
2 4 5 9
|
2strop1 |
|- ( { (/) , A } e. _V -> { (/) , A } = ( TopSet ` K ) ) |
11 |
8 10
|
ax-mp |
|- { (/) , A } = ( TopSet ` K ) |
12 |
7 11
|
tsettps |
|- ( { (/) , A } e. ( TopOn ` A ) -> K e. TopSp ) |
13 |
1 3 12
|
mp2b |
|- K e. TopSp |