| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indistpsALT.a |
|- A e. _V |
| 2 |
|
indistpsALT.k |
|- K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , { (/) , A } >. } |
| 3 |
|
indistopon |
|- ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) |
| 4 |
|
basendxlttsetndx |
|- ( Base ` ndx ) < ( TopSet ` ndx ) |
| 5 |
|
tsetndxnn |
|- ( TopSet ` ndx ) e. NN |
| 6 |
2 4 5
|
2strbas |
|- ( A e. _V -> A = ( Base ` K ) ) |
| 7 |
1 6
|
ax-mp |
|- A = ( Base ` K ) |
| 8 |
|
prex |
|- { (/) , A } e. _V |
| 9 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 10 |
2 4 5 9
|
2strop |
|- ( { (/) , A } e. _V -> { (/) , A } = ( TopSet ` K ) ) |
| 11 |
8 10
|
ax-mp |
|- { (/) , A } = ( TopSet ` K ) |
| 12 |
7 11
|
tsettps |
|- ( { (/) , A } e. ( TopOn ` A ) -> K e. TopSp ) |
| 13 |
1 3 12
|
mp2b |
|- K e. TopSp |