Metamath Proof Explorer


Theorem indistpsx

Description: The indiscrete topology on a set A expressed as a topological space, using explicit structure component references. Compare with indistps and indistps2 . The advantage of this version is that the actual function for the structure is evident, and df-ndx is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base and df-tset are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006)

Ref Expression
Hypotheses indistpsx.a
|- A e. _V
indistpsx.k
|- K = { <. 1 , A >. , <. 9 , { (/) , A } >. }
Assertion indistpsx
|- K e. TopSp

Proof

Step Hyp Ref Expression
1 indistpsx.a
 |-  A e. _V
2 indistpsx.k
 |-  K = { <. 1 , A >. , <. 9 , { (/) , A } >. }
3 basendx
 |-  ( Base ` ndx ) = 1
4 3 opeq1i
 |-  <. ( Base ` ndx ) , A >. = <. 1 , A >.
5 tsetndx
 |-  ( TopSet ` ndx ) = 9
6 5 opeq1i
 |-  <. ( TopSet ` ndx ) , { (/) , A } >. = <. 9 , { (/) , A } >.
7 4 6 preq12i
 |-  { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , { (/) , A } >. } = { <. 1 , A >. , <. 9 , { (/) , A } >. }
8 2 7 eqtr4i
 |-  K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , { (/) , A } >. }
9 indistopon
 |-  ( A e. _V -> { (/) , A } e. ( TopOn ` A ) )
10 1 9 ax-mp
 |-  { (/) , A } e. ( TopOn ` A )
11 10 toponunii
 |-  A = U. { (/) , A }
12 indistop
 |-  { (/) , A } e. Top
13 8 11 12 eltpsi
 |-  K e. TopSp