Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indisuni | |- ( _I ` A ) = U. { (/) , A } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indislem |  |-  { (/) , ( _I ` A ) } = { (/) , A } | |
| 2 | fvex | |- ( _I ` A ) e. _V | |
| 3 | indistopon |  |-  ( ( _I ` A ) e. _V -> { (/) , ( _I ` A ) } e. ( TopOn ` ( _I ` A ) ) ) | |
| 4 | 2 3 | ax-mp |  |-  { (/) , ( _I ` A ) } e. ( TopOn ` ( _I ` A ) ) | 
| 5 | 1 4 | eqeltrri |  |-  { (/) , A } e. ( TopOn ` ( _I ` A ) ) | 
| 6 | 5 | toponunii |  |-  ( _I ` A ) = U. { (/) , A } |