Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indisuni | |- ( _I ` A ) = U. { (/) , A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
|
2 | fvex | |- ( _I ` A ) e. _V |
|
3 | indistopon | |- ( ( _I ` A ) e. _V -> { (/) , ( _I ` A ) } e. ( TopOn ` ( _I ` A ) ) ) |
|
4 | 2 3 | ax-mp | |- { (/) , ( _I ` A ) } e. ( TopOn ` ( _I ` A ) ) |
5 | 1 4 | eqeltrri | |- { (/) , A } e. ( TopOn ` ( _I ` A ) ) |
6 | 5 | toponunii | |- ( _I ` A ) = U. { (/) , A } |