Step |
Hyp |
Ref |
Expression |
1 |
|
ind1a |
|- ( ( O e. V /\ A C_ O /\ x e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) = 1 <-> x e. A ) ) |
2 |
1
|
3expia |
|- ( ( O e. V /\ A C_ O ) -> ( x e. O -> ( ( ( ( _Ind ` O ) ` A ) ` x ) = 1 <-> x e. A ) ) ) |
3 |
2
|
pm5.32d |
|- ( ( O e. V /\ A C_ O ) -> ( ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) <-> ( x e. O /\ x e. A ) ) ) |
4 |
|
indf |
|- ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
5 |
|
ffn |
|- ( ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } -> ( ( _Ind ` O ) ` A ) Fn O ) |
6 |
|
fniniseg |
|- ( ( ( _Ind ` O ) ` A ) Fn O -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) ) ) |
7 |
4 5 6
|
3syl |
|- ( ( O e. V /\ A C_ O ) -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) ) ) |
8 |
|
ssel |
|- ( A C_ O -> ( x e. A -> x e. O ) ) |
9 |
8
|
pm4.71rd |
|- ( A C_ O -> ( x e. A <-> ( x e. O /\ x e. A ) ) ) |
10 |
9
|
adantl |
|- ( ( O e. V /\ A C_ O ) -> ( x e. A <-> ( x e. O /\ x e. A ) ) ) |
11 |
3 7 10
|
3bitr4d |
|- ( ( O e. V /\ A C_ O ) -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> x e. A ) ) |
12 |
11
|
eqrdv |
|- ( ( O e. V /\ A C_ O ) -> ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) = A ) |