| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ind1a |  |-  ( ( O e. V /\ A C_ O /\ x e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) = 1 <-> x e. A ) ) | 
						
							| 2 | 1 | 3expia |  |-  ( ( O e. V /\ A C_ O ) -> ( x e. O -> ( ( ( ( _Ind ` O ) ` A ) ` x ) = 1 <-> x e. A ) ) ) | 
						
							| 3 | 2 | pm5.32d |  |-  ( ( O e. V /\ A C_ O ) -> ( ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) <-> ( x e. O /\ x e. A ) ) ) | 
						
							| 4 |  | indf |  |-  ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) | 
						
							| 5 |  | ffn |  |-  ( ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } -> ( ( _Ind ` O ) ` A ) Fn O ) | 
						
							| 6 |  | fniniseg |  |-  ( ( ( _Ind ` O ) ` A ) Fn O -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) ) ) | 
						
							| 7 | 4 5 6 | 3syl |  |-  ( ( O e. V /\ A C_ O ) -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> ( x e. O /\ ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) ) ) | 
						
							| 8 |  | ssel |  |-  ( A C_ O -> ( x e. A -> x e. O ) ) | 
						
							| 9 | 8 | pm4.71rd |  |-  ( A C_ O -> ( x e. A <-> ( x e. O /\ x e. A ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( O e. V /\ A C_ O ) -> ( x e. A <-> ( x e. O /\ x e. A ) ) ) | 
						
							| 11 | 3 7 10 | 3bitr4d |  |-  ( ( O e. V /\ A C_ O ) -> ( x e. ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) <-> x e. A ) ) | 
						
							| 12 | 11 | eqrdv |  |-  ( ( O e. V /\ A C_ O ) -> ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) = A ) |