| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indsum.1 |  |-  ( ph -> O e. Fin ) | 
						
							| 2 |  | indsum.2 |  |-  ( ph -> A C_ O ) | 
						
							| 3 |  | indsum.3 |  |-  ( ( ph /\ x e. O ) -> B e. CC ) | 
						
							| 4 | 2 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. O ) | 
						
							| 5 |  | pr01ssre |  |-  { 0 , 1 } C_ RR | 
						
							| 6 |  | indf |  |-  ( ( O e. Fin /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) | 
						
							| 7 | 1 2 6 | syl2anc |  |-  ( ph -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) | 
						
							| 8 | 7 | ffvelcdmda |  |-  ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. { 0 , 1 } ) | 
						
							| 9 | 5 8 | sselid |  |-  ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ph /\ x e. O ) -> ( ( ( _Ind ` O ) ` A ) ` x ) e. CC ) | 
						
							| 11 | 10 3 | mulcld |  |-  ( ( ph /\ x e. O ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) e. CC ) | 
						
							| 12 | 4 11 | syldan |  |-  ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) e. CC ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ x e. ( O \ A ) ) -> O e. Fin ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ x e. ( O \ A ) ) -> A C_ O ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ x e. ( O \ A ) ) -> x e. ( O \ A ) ) | 
						
							| 16 |  | ind0 |  |-  ( ( O e. Fin /\ A C_ O /\ x e. ( O \ A ) ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 0 ) | 
						
							| 17 | 13 14 15 16 | syl3anc |  |-  ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 0 ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = ( 0 x. B ) ) | 
						
							| 19 |  | difssd |  |-  ( ph -> ( O \ A ) C_ O ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ph /\ x e. ( O \ A ) ) -> x e. O ) | 
						
							| 21 | 3 | mul02d |  |-  ( ( ph /\ x e. O ) -> ( 0 x. B ) = 0 ) | 
						
							| 22 | 20 21 | syldan |  |-  ( ( ph /\ x e. ( O \ A ) ) -> ( 0 x. B ) = 0 ) | 
						
							| 23 | 18 22 | eqtrd |  |-  ( ( ph /\ x e. ( O \ A ) ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = 0 ) | 
						
							| 24 | 2 12 23 1 | fsumss |  |-  ( ph -> sum_ x e. A ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. O ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) ) | 
						
							| 25 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> O e. Fin ) | 
						
							| 26 | 2 | adantr |  |-  ( ( ph /\ x e. A ) -> A C_ O ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 28 |  | ind1 |  |-  ( ( O e. Fin /\ A C_ O /\ x e. A ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) | 
						
							| 29 | 25 26 27 28 | syl3anc |  |-  ( ( ph /\ x e. A ) -> ( ( ( _Ind ` O ) ` A ) ` x ) = 1 ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = ( 1 x. B ) ) | 
						
							| 31 | 3 | mullidd |  |-  ( ( ph /\ x e. O ) -> ( 1 x. B ) = B ) | 
						
							| 32 | 4 31 | syldan |  |-  ( ( ph /\ x e. A ) -> ( 1 x. B ) = B ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ( ph /\ x e. A ) -> ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = B ) | 
						
							| 34 | 33 | sumeq2dv |  |-  ( ph -> sum_ x e. A ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. A B ) | 
						
							| 35 | 24 34 | eqtr3d |  |-  ( ph -> sum_ x e. O ( ( ( ( _Ind ` O ) ` A ) ` x ) x. B ) = sum_ x e. A B ) |