Step |
Hyp |
Ref |
Expression |
1 |
|
indsumin.1 |
|- ( ph -> O e. V ) |
2 |
|
indsumin.2 |
|- ( ph -> A e. Fin ) |
3 |
|
indsumin.3 |
|- ( ph -> A C_ O ) |
4 |
|
indsumin.4 |
|- ( ph -> B C_ O ) |
5 |
|
indsumin.5 |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
6 |
|
inindif |
|- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
7 |
6
|
a1i |
|- ( ph -> ( ( A i^i B ) i^i ( A \ B ) ) = (/) ) |
8 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
9 |
8
|
eqcomi |
|- A = ( ( A i^i B ) u. ( A \ B ) ) |
10 |
9
|
a1i |
|- ( ph -> A = ( ( A i^i B ) u. ( A \ B ) ) ) |
11 |
|
pr01ssre |
|- { 0 , 1 } C_ RR |
12 |
|
ax-resscn |
|- RR C_ CC |
13 |
11 12
|
sstri |
|- { 0 , 1 } C_ CC |
14 |
|
indf |
|- ( ( O e. V /\ B C_ O ) -> ( ( _Ind ` O ) ` B ) : O --> { 0 , 1 } ) |
15 |
1 4 14
|
syl2anc |
|- ( ph -> ( ( _Ind ` O ) ` B ) : O --> { 0 , 1 } ) |
16 |
15
|
adantr |
|- ( ( ph /\ k e. A ) -> ( ( _Ind ` O ) ` B ) : O --> { 0 , 1 } ) |
17 |
3
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. O ) |
18 |
16 17
|
ffvelrnd |
|- ( ( ph /\ k e. A ) -> ( ( ( _Ind ` O ) ` B ) ` k ) e. { 0 , 1 } ) |
19 |
13 18
|
sselid |
|- ( ( ph /\ k e. A ) -> ( ( ( _Ind ` O ) ` B ) ` k ) e. CC ) |
20 |
19 5
|
mulcld |
|- ( ( ph /\ k e. A ) -> ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) e. CC ) |
21 |
7 10 2 20
|
fsumsplit |
|- ( ph -> sum_ k e. A ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = ( sum_ k e. ( A i^i B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) + sum_ k e. ( A \ B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) ) ) |
22 |
1
|
adantr |
|- ( ( ph /\ k e. ( A i^i B ) ) -> O e. V ) |
23 |
4
|
adantr |
|- ( ( ph /\ k e. ( A i^i B ) ) -> B C_ O ) |
24 |
|
inss2 |
|- ( A i^i B ) C_ B |
25 |
24
|
a1i |
|- ( ph -> ( A i^i B ) C_ B ) |
26 |
25
|
sselda |
|- ( ( ph /\ k e. ( A i^i B ) ) -> k e. B ) |
27 |
|
ind1 |
|- ( ( O e. V /\ B C_ O /\ k e. B ) -> ( ( ( _Ind ` O ) ` B ) ` k ) = 1 ) |
28 |
22 23 26 27
|
syl3anc |
|- ( ( ph /\ k e. ( A i^i B ) ) -> ( ( ( _Ind ` O ) ` B ) ` k ) = 1 ) |
29 |
28
|
oveq1d |
|- ( ( ph /\ k e. ( A i^i B ) ) -> ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = ( 1 x. C ) ) |
30 |
|
inss1 |
|- ( A i^i B ) C_ A |
31 |
30
|
a1i |
|- ( ph -> ( A i^i B ) C_ A ) |
32 |
31
|
sselda |
|- ( ( ph /\ k e. ( A i^i B ) ) -> k e. A ) |
33 |
32 5
|
syldan |
|- ( ( ph /\ k e. ( A i^i B ) ) -> C e. CC ) |
34 |
33
|
mulid2d |
|- ( ( ph /\ k e. ( A i^i B ) ) -> ( 1 x. C ) = C ) |
35 |
29 34
|
eqtrd |
|- ( ( ph /\ k e. ( A i^i B ) ) -> ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = C ) |
36 |
35
|
sumeq2dv |
|- ( ph -> sum_ k e. ( A i^i B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = sum_ k e. ( A i^i B ) C ) |
37 |
1
|
adantr |
|- ( ( ph /\ k e. ( A \ B ) ) -> O e. V ) |
38 |
4
|
adantr |
|- ( ( ph /\ k e. ( A \ B ) ) -> B C_ O ) |
39 |
3
|
ssdifd |
|- ( ph -> ( A \ B ) C_ ( O \ B ) ) |
40 |
39
|
sselda |
|- ( ( ph /\ k e. ( A \ B ) ) -> k e. ( O \ B ) ) |
41 |
|
ind0 |
|- ( ( O e. V /\ B C_ O /\ k e. ( O \ B ) ) -> ( ( ( _Ind ` O ) ` B ) ` k ) = 0 ) |
42 |
37 38 40 41
|
syl3anc |
|- ( ( ph /\ k e. ( A \ B ) ) -> ( ( ( _Ind ` O ) ` B ) ` k ) = 0 ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ k e. ( A \ B ) ) -> ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = ( 0 x. C ) ) |
44 |
|
difssd |
|- ( ph -> ( A \ B ) C_ A ) |
45 |
44
|
sselda |
|- ( ( ph /\ k e. ( A \ B ) ) -> k e. A ) |
46 |
45 5
|
syldan |
|- ( ( ph /\ k e. ( A \ B ) ) -> C e. CC ) |
47 |
46
|
mul02d |
|- ( ( ph /\ k e. ( A \ B ) ) -> ( 0 x. C ) = 0 ) |
48 |
43 47
|
eqtrd |
|- ( ( ph /\ k e. ( A \ B ) ) -> ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = 0 ) |
49 |
48
|
sumeq2dv |
|- ( ph -> sum_ k e. ( A \ B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = sum_ k e. ( A \ B ) 0 ) |
50 |
|
diffi |
|- ( A e. Fin -> ( A \ B ) e. Fin ) |
51 |
2 50
|
syl |
|- ( ph -> ( A \ B ) e. Fin ) |
52 |
|
sumz |
|- ( ( ( A \ B ) C_ ( ZZ>= ` 0 ) \/ ( A \ B ) e. Fin ) -> sum_ k e. ( A \ B ) 0 = 0 ) |
53 |
52
|
olcs |
|- ( ( A \ B ) e. Fin -> sum_ k e. ( A \ B ) 0 = 0 ) |
54 |
51 53
|
syl |
|- ( ph -> sum_ k e. ( A \ B ) 0 = 0 ) |
55 |
49 54
|
eqtrd |
|- ( ph -> sum_ k e. ( A \ B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = 0 ) |
56 |
36 55
|
oveq12d |
|- ( ph -> ( sum_ k e. ( A i^i B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) + sum_ k e. ( A \ B ) ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) ) = ( sum_ k e. ( A i^i B ) C + 0 ) ) |
57 |
|
infi |
|- ( A e. Fin -> ( A i^i B ) e. Fin ) |
58 |
2 57
|
syl |
|- ( ph -> ( A i^i B ) e. Fin ) |
59 |
58 33
|
fsumcl |
|- ( ph -> sum_ k e. ( A i^i B ) C e. CC ) |
60 |
59
|
addid1d |
|- ( ph -> ( sum_ k e. ( A i^i B ) C + 0 ) = sum_ k e. ( A i^i B ) C ) |
61 |
21 56 60
|
3eqtrd |
|- ( ph -> sum_ k e. A ( ( ( ( _Ind ` O ) ` B ) ` k ) x. C ) = sum_ k e. ( A i^i B ) C ) |