Metamath Proof Explorer


Theorem inegd

Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypothesis inegd.1
|- ( ( ph /\ ps ) -> F. )
Assertion inegd
|- ( ph -> -. ps )

Proof

Step Hyp Ref Expression
1 inegd.1
 |-  ( ( ph /\ ps ) -> F. )
2 1 ex
 |-  ( ph -> ( ps -> F. ) )
3 dfnot
 |-  ( -. ps <-> ( ps -> F. ) )
4 2 3 sylibr
 |-  ( ph -> -. ps )