Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993) (Proof shortened by SN, 20-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ineq1 | |- ( A = B -> ( A i^i C ) = ( B i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq | |- ( A = B -> { x e. A | x e. C } = { x e. B | x e. C } ) |
|
| 2 | dfin5 | |- ( A i^i C ) = { x e. A | x e. C } |
|
| 3 | dfin5 | |- ( B i^i C ) = { x e. B | x e. C } |
|
| 4 | 1 2 3 | 3eqtr4g | |- ( A = B -> ( A i^i C ) = ( B i^i C ) ) |