Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ineqri.1 | |- ( ( x e. A /\ x e. B ) <-> x e. C ) |
|
| Assertion | ineqri | |- ( A i^i B ) = C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineqri.1 | |- ( ( x e. A /\ x e. B ) <-> x e. C ) |
|
| 2 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 3 | 2 1 | bitri | |- ( x e. ( A i^i B ) <-> x e. C ) |
| 4 | 3 | eqriv | |- ( A i^i B ) = C |