Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ineqri.1 | |- ( ( x e. A /\ x e. B ) <-> x e. C ) |
|
Assertion | ineqri | |- ( A i^i B ) = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineqri.1 | |- ( ( x e. A /\ x e. B ) <-> x e. C ) |
|
2 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
3 | 2 1 | bitri | |- ( x e. ( A i^i B ) <-> x e. C ) |
4 | 3 | eqriv | |- ( A i^i B ) = C |