Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
2 |
|
inf3lem.2 |
|- F = ( rec ( G , (/) ) |` _om ) |
3 |
|
inf3lem.3 |
|- A e. _V |
4 |
|
inf3lem.4 |
|- B e. _V |
5 |
|
elnn |
|- ( ( B e. A /\ A e. _om ) -> B e. _om ) |
6 |
5
|
ancoms |
|- ( ( A e. _om /\ B e. A ) -> B e. _om ) |
7 |
|
nnord |
|- ( A e. _om -> Ord A ) |
8 |
|
ordsucss |
|- ( Ord A -> ( B e. A -> suc B C_ A ) ) |
9 |
7 8
|
syl |
|- ( A e. _om -> ( B e. A -> suc B C_ A ) ) |
10 |
9
|
adantr |
|- ( ( A e. _om /\ B e. _om ) -> ( B e. A -> suc B C_ A ) ) |
11 |
|
peano2b |
|- ( B e. _om <-> suc B e. _om ) |
12 |
|
fveq2 |
|- ( v = suc B -> ( F ` v ) = ( F ` suc B ) ) |
13 |
12
|
psseq2d |
|- ( v = suc B -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` suc B ) ) ) |
14 |
13
|
imbi2d |
|- ( v = suc B -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) ) |
15 |
|
fveq2 |
|- ( v = u -> ( F ` v ) = ( F ` u ) ) |
16 |
15
|
psseq2d |
|- ( v = u -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` u ) ) ) |
17 |
16
|
imbi2d |
|- ( v = u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) ) ) |
18 |
|
fveq2 |
|- ( v = suc u -> ( F ` v ) = ( F ` suc u ) ) |
19 |
18
|
psseq2d |
|- ( v = suc u -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` suc u ) ) ) |
20 |
19
|
imbi2d |
|- ( v = suc u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
21 |
|
fveq2 |
|- ( v = A -> ( F ` v ) = ( F ` A ) ) |
22 |
21
|
psseq2d |
|- ( v = A -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` A ) ) ) |
23 |
22
|
imbi2d |
|- ( v = A -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
24 |
1 2 4 4
|
inf3lem4 |
|- ( ( x =/= (/) /\ x C_ U. x ) -> ( B e. _om -> ( F ` B ) C. ( F ` suc B ) ) ) |
25 |
24
|
com12 |
|- ( B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) |
26 |
11 25
|
sylbir |
|- ( suc B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) |
27 |
|
vex |
|- u e. _V |
28 |
1 2 27 4
|
inf3lem4 |
|- ( ( x =/= (/) /\ x C_ U. x ) -> ( u e. _om -> ( F ` u ) C. ( F ` suc u ) ) ) |
29 |
|
psstr |
|- ( ( ( F ` B ) C. ( F ` u ) /\ ( F ` u ) C. ( F ` suc u ) ) -> ( F ` B ) C. ( F ` suc u ) ) |
30 |
29
|
expcom |
|- ( ( F ` u ) C. ( F ` suc u ) -> ( ( F ` B ) C. ( F ` u ) -> ( F ` B ) C. ( F ` suc u ) ) ) |
31 |
28 30
|
syl6com |
|- ( u e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( ( F ` B ) C. ( F ` u ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
32 |
31
|
a2d |
|- ( u e. _om -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( u e. _om /\ suc B e. _om ) /\ suc B C_ u ) -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
34 |
14 17 20 23 26 33
|
findsg |
|- ( ( ( A e. _om /\ suc B e. _om ) /\ suc B C_ A ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) |
35 |
34
|
ex |
|- ( ( A e. _om /\ suc B e. _om ) -> ( suc B C_ A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
36 |
11 35
|
sylan2b |
|- ( ( A e. _om /\ B e. _om ) -> ( suc B C_ A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
37 |
10 36
|
syld |
|- ( ( A e. _om /\ B e. _om ) -> ( B e. A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
38 |
37
|
impancom |
|- ( ( A e. _om /\ B e. A ) -> ( B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
39 |
6 38
|
mpd |
|- ( ( A e. _om /\ B e. A ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) |
40 |
39
|
com12 |
|- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( A e. _om /\ B e. A ) -> ( F ` B ) C. ( F ` A ) ) ) |