| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
| 2 |
|
inf3lem.2 |
|- F = ( rec ( G , (/) ) |` _om ) |
| 3 |
|
inf3lem.3 |
|- A e. _V |
| 4 |
|
inf3lem.4 |
|- B e. _V |
| 5 |
|
ineq1 |
|- ( f = A -> ( f i^i x ) = ( A i^i x ) ) |
| 6 |
5
|
sseq1d |
|- ( f = A -> ( ( f i^i x ) C_ B <-> ( A i^i x ) C_ B ) ) |
| 7 |
|
sseq2 |
|- ( v = B -> ( ( f i^i x ) C_ v <-> ( f i^i x ) C_ B ) ) |
| 8 |
7
|
rabbidv |
|- ( v = B -> { f e. x | ( f i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ B } ) |
| 9 |
|
sseq2 |
|- ( y = v -> ( ( w i^i x ) C_ y <-> ( w i^i x ) C_ v ) ) |
| 10 |
9
|
rabbidv |
|- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { w e. x | ( w i^i x ) C_ v } ) |
| 11 |
|
ineq1 |
|- ( w = f -> ( w i^i x ) = ( f i^i x ) ) |
| 12 |
11
|
sseq1d |
|- ( w = f -> ( ( w i^i x ) C_ v <-> ( f i^i x ) C_ v ) ) |
| 13 |
12
|
cbvrabv |
|- { w e. x | ( w i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ v } |
| 14 |
10 13
|
eqtrdi |
|- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { f e. x | ( f i^i x ) C_ v } ) |
| 15 |
14
|
cbvmptv |
|- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
| 16 |
1 15
|
eqtri |
|- G = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
| 17 |
|
vex |
|- x e. _V |
| 18 |
17
|
rabex |
|- { f e. x | ( f i^i x ) C_ B } e. _V |
| 19 |
8 16 18
|
fvmpt |
|- ( B e. _V -> ( G ` B ) = { f e. x | ( f i^i x ) C_ B } ) |
| 20 |
4 19
|
ax-mp |
|- ( G ` B ) = { f e. x | ( f i^i x ) C_ B } |
| 21 |
6 20
|
elrab2 |
|- ( A e. ( G ` B ) <-> ( A e. x /\ ( A i^i x ) C_ B ) ) |