Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
2 |
|
inf3lem.2 |
|- F = ( rec ( G , (/) ) |` _om ) |
3 |
|
inf3lem.3 |
|- A e. _V |
4 |
|
inf3lem.4 |
|- B e. _V |
5 |
|
ineq1 |
|- ( f = A -> ( f i^i x ) = ( A i^i x ) ) |
6 |
5
|
sseq1d |
|- ( f = A -> ( ( f i^i x ) C_ B <-> ( A i^i x ) C_ B ) ) |
7 |
|
sseq2 |
|- ( v = B -> ( ( f i^i x ) C_ v <-> ( f i^i x ) C_ B ) ) |
8 |
7
|
rabbidv |
|- ( v = B -> { f e. x | ( f i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ B } ) |
9 |
|
sseq2 |
|- ( y = v -> ( ( w i^i x ) C_ y <-> ( w i^i x ) C_ v ) ) |
10 |
9
|
rabbidv |
|- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { w e. x | ( w i^i x ) C_ v } ) |
11 |
|
ineq1 |
|- ( w = f -> ( w i^i x ) = ( f i^i x ) ) |
12 |
11
|
sseq1d |
|- ( w = f -> ( ( w i^i x ) C_ v <-> ( f i^i x ) C_ v ) ) |
13 |
12
|
cbvrabv |
|- { w e. x | ( w i^i x ) C_ v } = { f e. x | ( f i^i x ) C_ v } |
14 |
10 13
|
eqtrdi |
|- ( y = v -> { w e. x | ( w i^i x ) C_ y } = { f e. x | ( f i^i x ) C_ v } ) |
15 |
14
|
cbvmptv |
|- ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
16 |
1 15
|
eqtri |
|- G = ( v e. _V |-> { f e. x | ( f i^i x ) C_ v } ) |
17 |
|
vex |
|- x e. _V |
18 |
17
|
rabex |
|- { f e. x | ( f i^i x ) C_ B } e. _V |
19 |
8 16 18
|
fvmpt |
|- ( B e. _V -> ( G ` B ) = { f e. x | ( f i^i x ) C_ B } ) |
20 |
4 19
|
ax-mp |
|- ( G ` B ) = { f e. x | ( f i^i x ) C_ B } |
21 |
6 20
|
elrab2 |
|- ( A e. ( G ` B ) <-> ( A e. x /\ ( A i^i x ) C_ B ) ) |