Metamath Proof Explorer


Theorem inf3lemb

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } )
inf3lem.2
|- F = ( rec ( G , (/) ) |` _om )
inf3lem.3
|- A e. _V
inf3lem.4
|- B e. _V
Assertion inf3lemb
|- ( F ` (/) ) = (/)

Proof

Step Hyp Ref Expression
1 inf3lem.1
 |-  G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } )
2 inf3lem.2
 |-  F = ( rec ( G , (/) ) |` _om )
3 inf3lem.3
 |-  A e. _V
4 inf3lem.4
 |-  B e. _V
5 2 fveq1i
 |-  ( F ` (/) ) = ( ( rec ( G , (/) ) |` _om ) ` (/) )
6 0ex
 |-  (/) e. _V
7 fr0g
 |-  ( (/) e. _V -> ( ( rec ( G , (/) ) |` _om ) ` (/) ) = (/) )
8 6 7 ax-mp
 |-  ( ( rec ( G , (/) ) |` _om ) ` (/) ) = (/)
9 5 8 eqtri
 |-  ( F ` (/) ) = (/)