Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
inf3lem.3 | |- A e. _V |
||
inf3lem.4 | |- B e. _V |
||
Assertion | inf3lemb | |- ( F ` (/) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
3 | inf3lem.3 | |- A e. _V |
|
4 | inf3lem.4 | |- B e. _V |
|
5 | 2 | fveq1i | |- ( F ` (/) ) = ( ( rec ( G , (/) ) |` _om ) ` (/) ) |
6 | 0ex | |- (/) e. _V |
|
7 | fr0g | |- ( (/) e. _V -> ( ( rec ( G , (/) ) |` _om ) ` (/) ) = (/) ) |
|
8 | 6 7 | ax-mp | |- ( ( rec ( G , (/) ) |` _om ) ` (/) ) = (/) |
9 | 5 8 | eqtri | |- ( F ` (/) ) = (/) |