| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
|- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
| 2 |
|
inf3lem.2 |
|- F = ( rec ( G , (/) ) |` _om ) |
| 3 |
|
inf3lem.3 |
|- A e. _V |
| 4 |
|
inf3lem.4 |
|- B e. _V |
| 5 |
|
frsuc |
|- ( A e. _om -> ( ( rec ( G , (/) ) |` _om ) ` suc A ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` A ) ) ) |
| 6 |
2
|
fveq1i |
|- ( F ` suc A ) = ( ( rec ( G , (/) ) |` _om ) ` suc A ) |
| 7 |
2
|
fveq1i |
|- ( F ` A ) = ( ( rec ( G , (/) ) |` _om ) ` A ) |
| 8 |
7
|
fveq2i |
|- ( G ` ( F ` A ) ) = ( G ` ( ( rec ( G , (/) ) |` _om ) ` A ) ) |
| 9 |
5 6 8
|
3eqtr4g |
|- ( A e. _om -> ( F ` suc A ) = ( G ` ( F ` A ) ) ) |