Metamath Proof Explorer


Theorem infcvgaux1i

Description: Auxiliary theorem for applications of supcvg . Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008)

Ref Expression
Hypotheses infcvg.1
|- R = { x | E. y e. X x = -u A }
infcvg.2
|- ( y e. X -> A e. RR )
infcvg.3
|- Z e. X
infcvg.4
|- E. z e. RR A. w e. R w <_ z
Assertion infcvgaux1i
|- ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z )

Proof

Step Hyp Ref Expression
1 infcvg.1
 |-  R = { x | E. y e. X x = -u A }
2 infcvg.2
 |-  ( y e. X -> A e. RR )
3 infcvg.3
 |-  Z e. X
4 infcvg.4
 |-  E. z e. RR A. w e. R w <_ z
5 2 renegcld
 |-  ( y e. X -> -u A e. RR )
6 eleq1
 |-  ( x = -u A -> ( x e. RR <-> -u A e. RR ) )
7 5 6 syl5ibrcom
 |-  ( y e. X -> ( x = -u A -> x e. RR ) )
8 7 rexlimiv
 |-  ( E. y e. X x = -u A -> x e. RR )
9 8 abssi
 |-  { x | E. y e. X x = -u A } C_ RR
10 1 9 eqsstri
 |-  R C_ RR
11 eqid
 |-  -u [_ Z / y ]_ A = -u [_ Z / y ]_ A
12 11 nfth
 |-  F/ y -u [_ Z / y ]_ A = -u [_ Z / y ]_ A
13 csbeq1a
 |-  ( y = Z -> A = [_ Z / y ]_ A )
14 13 negeqd
 |-  ( y = Z -> -u A = -u [_ Z / y ]_ A )
15 14 eqeq2d
 |-  ( y = Z -> ( -u [_ Z / y ]_ A = -u A <-> -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) )
16 12 15 rspce
 |-  ( ( Z e. X /\ -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) -> E. y e. X -u [_ Z / y ]_ A = -u A )
17 3 11 16 mp2an
 |-  E. y e. X -u [_ Z / y ]_ A = -u A
18 negex
 |-  -u [_ Z / y ]_ A e. _V
19 nfcsb1v
 |-  F/_ y [_ Z / y ]_ A
20 19 nfneg
 |-  F/_ y -u [_ Z / y ]_ A
21 20 nfeq2
 |-  F/ y x = -u [_ Z / y ]_ A
22 eqeq1
 |-  ( x = -u [_ Z / y ]_ A -> ( x = -u A <-> -u [_ Z / y ]_ A = -u A ) )
23 21 22 rexbid
 |-  ( x = -u [_ Z / y ]_ A -> ( E. y e. X x = -u A <-> E. y e. X -u [_ Z / y ]_ A = -u A ) )
24 18 23 elab
 |-  ( -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A } <-> E. y e. X -u [_ Z / y ]_ A = -u A )
25 17 24 mpbir
 |-  -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A }
26 25 1 eleqtrri
 |-  -u [_ Z / y ]_ A e. R
27 26 ne0ii
 |-  R =/= (/)
28 10 27 4 3pm3.2i
 |-  ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z )