Step |
Hyp |
Ref |
Expression |
1 |
|
infcvg.1 |
|- R = { x | E. y e. X x = -u A } |
2 |
|
infcvg.2 |
|- ( y e. X -> A e. RR ) |
3 |
|
infcvg.3 |
|- Z e. X |
4 |
|
infcvg.4 |
|- E. z e. RR A. w e. R w <_ z |
5 |
2
|
renegcld |
|- ( y e. X -> -u A e. RR ) |
6 |
|
eleq1 |
|- ( x = -u A -> ( x e. RR <-> -u A e. RR ) ) |
7 |
5 6
|
syl5ibrcom |
|- ( y e. X -> ( x = -u A -> x e. RR ) ) |
8 |
7
|
rexlimiv |
|- ( E. y e. X x = -u A -> x e. RR ) |
9 |
8
|
abssi |
|- { x | E. y e. X x = -u A } C_ RR |
10 |
1 9
|
eqsstri |
|- R C_ RR |
11 |
|
eqid |
|- -u [_ Z / y ]_ A = -u [_ Z / y ]_ A |
12 |
11
|
nfth |
|- F/ y -u [_ Z / y ]_ A = -u [_ Z / y ]_ A |
13 |
|
csbeq1a |
|- ( y = Z -> A = [_ Z / y ]_ A ) |
14 |
13
|
negeqd |
|- ( y = Z -> -u A = -u [_ Z / y ]_ A ) |
15 |
14
|
eqeq2d |
|- ( y = Z -> ( -u [_ Z / y ]_ A = -u A <-> -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) ) |
16 |
12 15
|
rspce |
|- ( ( Z e. X /\ -u [_ Z / y ]_ A = -u [_ Z / y ]_ A ) -> E. y e. X -u [_ Z / y ]_ A = -u A ) |
17 |
3 11 16
|
mp2an |
|- E. y e. X -u [_ Z / y ]_ A = -u A |
18 |
|
negex |
|- -u [_ Z / y ]_ A e. _V |
19 |
|
nfcsb1v |
|- F/_ y [_ Z / y ]_ A |
20 |
19
|
nfneg |
|- F/_ y -u [_ Z / y ]_ A |
21 |
20
|
nfeq2 |
|- F/ y x = -u [_ Z / y ]_ A |
22 |
|
eqeq1 |
|- ( x = -u [_ Z / y ]_ A -> ( x = -u A <-> -u [_ Z / y ]_ A = -u A ) ) |
23 |
21 22
|
rexbid |
|- ( x = -u [_ Z / y ]_ A -> ( E. y e. X x = -u A <-> E. y e. X -u [_ Z / y ]_ A = -u A ) ) |
24 |
18 23
|
elab |
|- ( -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A } <-> E. y e. X -u [_ Z / y ]_ A = -u A ) |
25 |
17 24
|
mpbir |
|- -u [_ Z / y ]_ A e. { x | E. y e. X x = -u A } |
26 |
25 1
|
eleqtrri |
|- -u [_ Z / y ]_ A e. R |
27 |
26
|
ne0ii |
|- R =/= (/) |
28 |
10 27 4
|
3pm3.2i |
|- ( R C_ RR /\ R =/= (/) /\ E. z e. RR A. w e. R w <_ z ) |