| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A e. dom card ) |
| 2 |
|
difss |
|- ( A \ B ) C_ A |
| 3 |
|
ssdomg |
|- ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) ) |
| 4 |
1 2 3
|
mpisyl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ A ) |
| 5 |
|
sdomdom |
|- ( B ~< A -> B ~<_ A ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ A ) |
| 7 |
|
numdom |
|- ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card ) |
| 8 |
1 6 7
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B e. dom card ) |
| 9 |
|
unnum |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
| 10 |
1 8 9
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) e. dom card ) |
| 11 |
|
ssun1 |
|- A C_ ( A u. B ) |
| 12 |
|
ssdomg |
|- ( ( A u. B ) e. dom card -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
| 13 |
10 11 12
|
mpisyl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A u. B ) ) |
| 14 |
|
undif1 |
|- ( ( A \ B ) u. B ) = ( A u. B ) |
| 15 |
|
ssnum |
|- ( ( A e. dom card /\ ( A \ B ) C_ A ) -> ( A \ B ) e. dom card ) |
| 16 |
1 2 15
|
sylancl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. dom card ) |
| 17 |
|
undjudom |
|- ( ( ( A \ B ) e. dom card /\ B e. dom card ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
| 18 |
16 8 17
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
| 19 |
14 18
|
eqbrtrrid |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
| 20 |
|
domtr |
|- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
| 21 |
13 19 20
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
| 22 |
|
simp3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A ) |
| 23 |
|
sdomdom |
|- ( ( A \ B ) ~< B -> ( A \ B ) ~<_ B ) |
| 24 |
|
relsdom |
|- Rel ~< |
| 25 |
24
|
brrelex2i |
|- ( ( A \ B ) ~< B -> B e. _V ) |
| 26 |
|
djudom1 |
|- ( ( ( A \ B ) ~<_ B /\ B e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
| 27 |
23 25 26
|
syl2anc |
|- ( ( A \ B ) ~< B -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
| 28 |
|
domtr |
|- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) -> A ~<_ ( B |_| B ) ) |
| 29 |
28
|
ex |
|- ( A ~<_ ( ( A \ B ) |_| B ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
| 30 |
21 29
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
| 31 |
|
simp2 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ A ) |
| 32 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( B |_| B ) ) -> _om ~<_ ( B |_| B ) ) |
| 33 |
32
|
ex |
|- ( _om ~<_ A -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
| 34 |
31 33
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
| 35 |
|
djuinf |
|- ( _om ~<_ B <-> _om ~<_ ( B |_| B ) ) |
| 36 |
35
|
biimpri |
|- ( _om ~<_ ( B |_| B ) -> _om ~<_ B ) |
| 37 |
|
domrefg |
|- ( B e. dom card -> B ~<_ B ) |
| 38 |
|
infdjuabs |
|- ( ( B e. dom card /\ _om ~<_ B /\ B ~<_ B ) -> ( B |_| B ) ~~ B ) |
| 39 |
38
|
3com23 |
|- ( ( B e. dom card /\ B ~<_ B /\ _om ~<_ B ) -> ( B |_| B ) ~~ B ) |
| 40 |
39
|
3expia |
|- ( ( B e. dom card /\ B ~<_ B ) -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
| 41 |
37 40
|
mpdan |
|- ( B e. dom card -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
| 42 |
8 36 41
|
syl2im |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( _om ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
| 43 |
34 42
|
syld |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
| 44 |
|
domen2 |
|- ( ( B |_| B ) ~~ B -> ( A ~<_ ( B |_| B ) <-> A ~<_ B ) ) |
| 45 |
44
|
biimpcd |
|- ( A ~<_ ( B |_| B ) -> ( ( B |_| B ) ~~ B -> A ~<_ B ) ) |
| 46 |
43 45
|
sylcom |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> A ~<_ B ) ) |
| 47 |
30 46
|
syld |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ B ) ) |
| 48 |
|
domnsym |
|- ( A ~<_ B -> -. B ~< A ) |
| 49 |
27 47 48
|
syl56 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) ~< B -> -. B ~< A ) ) |
| 50 |
22 49
|
mt2d |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~< B ) |
| 51 |
|
domtri2 |
|- ( ( B e. dom card /\ ( A \ B ) e. dom card ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
| 52 |
8 16 51
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
| 53 |
50 52
|
mpbird |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ ( A \ B ) ) |
| 54 |
1
|
difexd |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. _V ) |
| 55 |
|
djudom2 |
|- ( ( B ~<_ ( A \ B ) /\ ( A \ B ) e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 56 |
53 54 55
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 57 |
|
domtr |
|- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 58 |
21 56 57
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 59 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 60 |
31 58 59
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 61 |
|
djuinf |
|- ( _om ~<_ ( A \ B ) <-> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
| 62 |
60 61
|
sylibr |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( A \ B ) ) |
| 63 |
|
domrefg |
|- ( ( A \ B ) e. dom card -> ( A \ B ) ~<_ ( A \ B ) ) |
| 64 |
16 63
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ ( A \ B ) ) |
| 65 |
|
infdjuabs |
|- ( ( ( A \ B ) e. dom card /\ _om ~<_ ( A \ B ) /\ ( A \ B ) ~<_ ( A \ B ) ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
| 66 |
16 62 64 65
|
syl3anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
| 67 |
|
domentr |
|- ( ( A ~<_ ( ( A \ B ) |_| ( A \ B ) ) /\ ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) -> A ~<_ ( A \ B ) ) |
| 68 |
58 66 67
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A \ B ) ) |
| 69 |
|
sbth |
|- ( ( ( A \ B ) ~<_ A /\ A ~<_ ( A \ B ) ) -> ( A \ B ) ~~ A ) |
| 70 |
4 68 69
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |