Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A e. dom card ) |
2 |
|
difss |
|- ( A \ B ) C_ A |
3 |
|
ssdomg |
|- ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) ) |
4 |
1 2 3
|
mpisyl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ A ) |
5 |
|
sdomdom |
|- ( B ~< A -> B ~<_ A ) |
6 |
5
|
3ad2ant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ A ) |
7 |
|
numdom |
|- ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card ) |
8 |
1 6 7
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B e. dom card ) |
9 |
|
unnum |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
10 |
1 8 9
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) e. dom card ) |
11 |
|
ssun1 |
|- A C_ ( A u. B ) |
12 |
|
ssdomg |
|- ( ( A u. B ) e. dom card -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
13 |
10 11 12
|
mpisyl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A u. B ) ) |
14 |
|
undif1 |
|- ( ( A \ B ) u. B ) = ( A u. B ) |
15 |
|
ssnum |
|- ( ( A e. dom card /\ ( A \ B ) C_ A ) -> ( A \ B ) e. dom card ) |
16 |
1 2 15
|
sylancl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. dom card ) |
17 |
|
undjudom |
|- ( ( ( A \ B ) e. dom card /\ B e. dom card ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
18 |
16 8 17
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
19 |
14 18
|
eqbrtrrid |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) |
20 |
|
domtr |
|- ( ( A ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( ( A \ B ) |_| B ) ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
21 |
13 19 20
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| B ) ) |
22 |
|
simp3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A ) |
23 |
|
sdomdom |
|- ( ( A \ B ) ~< B -> ( A \ B ) ~<_ B ) |
24 |
|
relsdom |
|- Rel ~< |
25 |
24
|
brrelex2i |
|- ( ( A \ B ) ~< B -> B e. _V ) |
26 |
|
djudom1 |
|- ( ( ( A \ B ) ~<_ B /\ B e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
27 |
23 25 26
|
syl2anc |
|- ( ( A \ B ) ~< B -> ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) |
28 |
|
domtr |
|- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) ) -> A ~<_ ( B |_| B ) ) |
29 |
28
|
ex |
|- ( A ~<_ ( ( A \ B ) |_| B ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
30 |
21 29
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ ( B |_| B ) ) ) |
31 |
|
simp2 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ A ) |
32 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( B |_| B ) ) -> _om ~<_ ( B |_| B ) ) |
33 |
32
|
ex |
|- ( _om ~<_ A -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
34 |
31 33
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> _om ~<_ ( B |_| B ) ) ) |
35 |
|
djuinf |
|- ( _om ~<_ B <-> _om ~<_ ( B |_| B ) ) |
36 |
35
|
biimpri |
|- ( _om ~<_ ( B |_| B ) -> _om ~<_ B ) |
37 |
|
domrefg |
|- ( B e. dom card -> B ~<_ B ) |
38 |
|
infdjuabs |
|- ( ( B e. dom card /\ _om ~<_ B /\ B ~<_ B ) -> ( B |_| B ) ~~ B ) |
39 |
38
|
3com23 |
|- ( ( B e. dom card /\ B ~<_ B /\ _om ~<_ B ) -> ( B |_| B ) ~~ B ) |
40 |
39
|
3expia |
|- ( ( B e. dom card /\ B ~<_ B ) -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
41 |
37 40
|
mpdan |
|- ( B e. dom card -> ( _om ~<_ B -> ( B |_| B ) ~~ B ) ) |
42 |
8 36 41
|
syl2im |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( _om ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
43 |
34 42
|
syld |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> ( B |_| B ) ~~ B ) ) |
44 |
|
domen2 |
|- ( ( B |_| B ) ~~ B -> ( A ~<_ ( B |_| B ) <-> A ~<_ B ) ) |
45 |
44
|
biimpcd |
|- ( A ~<_ ( B |_| B ) -> ( ( B |_| B ) ~~ B -> A ~<_ B ) ) |
46 |
43 45
|
sylcom |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A ~<_ ( B |_| B ) -> A ~<_ B ) ) |
47 |
30 46
|
syld |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( ( A \ B ) |_| B ) ~<_ ( B |_| B ) -> A ~<_ B ) ) |
48 |
|
domnsym |
|- ( A ~<_ B -> -. B ~< A ) |
49 |
27 47 48
|
syl56 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) ~< B -> -. B ~< A ) ) |
50 |
22 49
|
mt2d |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~< B ) |
51 |
|
domtri2 |
|- ( ( B e. dom card /\ ( A \ B ) e. dom card ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
52 |
8 16 51
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( B ~<_ ( A \ B ) <-> -. ( A \ B ) ~< B ) ) |
53 |
50 52
|
mpbird |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~<_ ( A \ B ) ) |
54 |
1
|
difexd |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) e. _V ) |
55 |
|
djudom2 |
|- ( ( B ~<_ ( A \ B ) /\ ( A \ B ) e. _V ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
56 |
53 54 55
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
57 |
|
domtr |
|- ( ( A ~<_ ( ( A \ B ) |_| B ) /\ ( ( A \ B ) |_| B ) ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
58 |
21 56 57
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
59 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
60 |
31 58 59
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
61 |
|
djuinf |
|- ( _om ~<_ ( A \ B ) <-> _om ~<_ ( ( A \ B ) |_| ( A \ B ) ) ) |
62 |
60 61
|
sylibr |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> _om ~<_ ( A \ B ) ) |
63 |
|
domrefg |
|- ( ( A \ B ) e. dom card -> ( A \ B ) ~<_ ( A \ B ) ) |
64 |
16 63
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~<_ ( A \ B ) ) |
65 |
|
infdjuabs |
|- ( ( ( A \ B ) e. dom card /\ _om ~<_ ( A \ B ) /\ ( A \ B ) ~<_ ( A \ B ) ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
66 |
16 62 64 65
|
syl3anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) |
67 |
|
domentr |
|- ( ( A ~<_ ( ( A \ B ) |_| ( A \ B ) ) /\ ( ( A \ B ) |_| ( A \ B ) ) ~~ ( A \ B ) ) -> A ~<_ ( A \ B ) ) |
68 |
58 66 67
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~<_ ( A \ B ) ) |
69 |
|
sbth |
|- ( ( ( A \ B ) ~<_ A /\ A ~<_ ( A \ B ) ) -> ( A \ B ) ~~ A ) |
70 |
4 68 69
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |