Step |
Hyp |
Ref |
Expression |
1 |
|
domnsym |
|- ( ( A \ B ) ~<_ B -> -. B ~< ( A \ B ) ) |
2 |
|
simp3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< A ) |
3 |
|
infdif |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> ( A \ B ) ~~ A ) |
4 |
3
|
ensymd |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> A ~~ ( A \ B ) ) |
5 |
|
sdomentr |
|- ( ( B ~< A /\ A ~~ ( A \ B ) ) -> B ~< ( A \ B ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> B ~< ( A \ B ) ) |
7 |
1 6
|
nsyl3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~< A ) -> -. ( A \ B ) ~<_ B ) |
8 |
7
|
3expia |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) ) |
9 |
8
|
3adant2 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( B ~< A -> -. ( A \ B ) ~<_ B ) ) |
10 |
9
|
con2d |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> -. B ~< A ) ) |
11 |
|
domtri2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B <-> -. B ~< A ) ) |
12 |
11
|
3adant3 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B <-> -. B ~< A ) ) |
13 |
10 12
|
sylibrd |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B -> A ~<_ B ) ) |
14 |
|
simp1 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
15 |
|
difss |
|- ( A \ B ) C_ A |
16 |
|
ssdomg |
|- ( A e. dom card -> ( ( A \ B ) C_ A -> ( A \ B ) ~<_ A ) ) |
17 |
14 15 16
|
mpisyl |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A \ B ) ~<_ A ) |
18 |
|
domtr |
|- ( ( ( A \ B ) ~<_ A /\ A ~<_ B ) -> ( A \ B ) ~<_ B ) |
19 |
18
|
ex |
|- ( ( A \ B ) ~<_ A -> ( A ~<_ B -> ( A \ B ) ~<_ B ) ) |
20 |
17 19
|
syl |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A ~<_ B -> ( A \ B ) ~<_ B ) ) |
21 |
13 20
|
impbid |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A \ B ) ~<_ B <-> A ~<_ B ) ) |