| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq2 |  |-  ( x = (/) -> ( A \ x ) = ( A \ (/) ) ) | 
						
							| 2 |  | dif0 |  |-  ( A \ (/) ) = A | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( x = (/) -> ( A \ x ) = A ) | 
						
							| 4 | 3 | breq1d |  |-  ( x = (/) -> ( ( A \ x ) ~~ A <-> A ~~ A ) ) | 
						
							| 5 | 4 | imbi2d |  |-  ( x = (/) -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> A ~~ A ) ) ) | 
						
							| 6 |  | difeq2 |  |-  ( x = y -> ( A \ x ) = ( A \ y ) ) | 
						
							| 7 | 6 | breq1d |  |-  ( x = y -> ( ( A \ x ) ~~ A <-> ( A \ y ) ~~ A ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( x = y -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( A \ y ) ~~ A ) ) ) | 
						
							| 9 |  | difeq2 |  |-  ( x = ( y u. { z } ) -> ( A \ x ) = ( A \ ( y u. { z } ) ) ) | 
						
							| 10 |  | difun1 |  |-  ( A \ ( y u. { z } ) ) = ( ( A \ y ) \ { z } ) | 
						
							| 11 | 9 10 | eqtrdi |  |-  ( x = ( y u. { z } ) -> ( A \ x ) = ( ( A \ y ) \ { z } ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( x = ( y u. { z } ) -> ( ( A \ x ) ~~ A <-> ( ( A \ y ) \ { z } ) ~~ A ) ) | 
						
							| 13 | 12 | imbi2d |  |-  ( x = ( y u. { z } ) -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) ) | 
						
							| 14 |  | difeq2 |  |-  ( x = B -> ( A \ x ) = ( A \ B ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( x = B -> ( ( A \ x ) ~~ A <-> ( A \ B ) ~~ A ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = B -> ( ( _om ~<_ A -> ( A \ x ) ~~ A ) <-> ( _om ~<_ A -> ( A \ B ) ~~ A ) ) ) | 
						
							| 17 |  | reldom |  |-  Rel ~<_ | 
						
							| 18 | 17 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 19 |  | enrefg |  |-  ( A e. _V -> A ~~ A ) | 
						
							| 20 | 18 19 | syl |  |-  ( _om ~<_ A -> A ~~ A ) | 
						
							| 21 |  | domen2 |  |-  ( ( A \ y ) ~~ A -> ( _om ~<_ ( A \ y ) <-> _om ~<_ A ) ) | 
						
							| 22 | 21 | biimparc |  |-  ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> _om ~<_ ( A \ y ) ) | 
						
							| 23 |  | infdifsn |  |-  ( _om ~<_ ( A \ y ) -> ( ( A \ y ) \ { z } ) ~~ ( A \ y ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ ( A \ y ) ) | 
						
							| 25 |  | entr |  |-  ( ( ( ( A \ y ) \ { z } ) ~~ ( A \ y ) /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ A ) | 
						
							| 26 | 24 25 | sylancom |  |-  ( ( _om ~<_ A /\ ( A \ y ) ~~ A ) -> ( ( A \ y ) \ { z } ) ~~ A ) | 
						
							| 27 | 26 | ex |  |-  ( _om ~<_ A -> ( ( A \ y ) ~~ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) | 
						
							| 28 | 27 | a2i |  |-  ( ( _om ~<_ A -> ( A \ y ) ~~ A ) -> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) | 
						
							| 29 | 28 | a1i |  |-  ( y e. Fin -> ( ( _om ~<_ A -> ( A \ y ) ~~ A ) -> ( _om ~<_ A -> ( ( A \ y ) \ { z } ) ~~ A ) ) ) | 
						
							| 30 | 5 8 13 16 20 29 | findcard2 |  |-  ( B e. Fin -> ( _om ~<_ A -> ( A \ B ) ~~ A ) ) | 
						
							| 31 | 30 | impcom |  |-  ( ( _om ~<_ A /\ B e. Fin ) -> ( A \ B ) ~~ A ) |