| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi |  |-  ( _om ~<_ A -> E. f f : _om -1-1-> A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( _om ~<_ A /\ B e. A ) -> E. f f : _om -1-1-> A ) | 
						
							| 3 |  | reldom |  |-  Rel ~<_ | 
						
							| 4 | 3 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A e. _V ) | 
						
							| 6 |  | simplr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> B e. A ) | 
						
							| 7 |  | f1f |  |-  ( f : _om -1-1-> A -> f : _om --> A ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om --> A ) | 
						
							| 9 |  | peano1 |  |-  (/) e. _om | 
						
							| 10 |  | ffvelcdm |  |-  ( ( f : _om --> A /\ (/) e. _om ) -> ( f ` (/) ) e. A ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. A ) | 
						
							| 12 |  | difsnen |  |-  ( ( A e. _V /\ B e. A /\ ( f ` (/) ) e. A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) | 
						
							| 13 | 5 6 11 12 | syl3anc |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) | 
						
							| 14 |  | vex |  |-  f e. _V | 
						
							| 15 |  | f1f1orn |  |-  ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-onto-> ran f ) | 
						
							| 17 |  | f1oen3g |  |-  ( ( f e. _V /\ f : _om -1-1-onto-> ran f ) -> _om ~~ ran f ) | 
						
							| 18 | 14 16 17 | sylancr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ran f ) | 
						
							| 19 | 18 | ensymd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ _om ) | 
						
							| 20 | 3 | brrelex1i |  |-  ( _om ~<_ A -> _om e. _V ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om e. _V ) | 
						
							| 22 |  | limom |  |-  Lim _om | 
						
							| 23 | 22 | limenpsi |  |-  ( _om e. _V -> _om ~~ ( _om \ { (/) } ) ) | 
						
							| 24 | 21 23 | syl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( _om \ { (/) } ) ) | 
						
							| 25 | 14 | resex |  |-  ( f |` ( _om \ { (/) } ) ) e. _V | 
						
							| 26 |  | simpr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-> A ) | 
						
							| 27 |  | difss |  |-  ( _om \ { (/) } ) C_ _om | 
						
							| 28 |  | f1ores |  |-  ( ( f : _om -1-1-> A /\ ( _om \ { (/) } ) C_ _om ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) | 
						
							| 30 |  | f1oen3g |  |-  ( ( ( f |` ( _om \ { (/) } ) ) e. _V /\ ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) | 
						
							| 31 | 25 29 30 | sylancr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) | 
						
							| 32 |  | f1orn |  |-  ( f : _om -1-1-onto-> ran f <-> ( f Fn _om /\ Fun `' f ) ) | 
						
							| 33 | 32 | simprbi |  |-  ( f : _om -1-1-onto-> ran f -> Fun `' f ) | 
						
							| 34 |  | imadif |  |-  ( Fun `' f -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) | 
						
							| 35 | 16 33 34 | 3syl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) | 
						
							| 36 |  | f1fn |  |-  ( f : _om -1-1-> A -> f Fn _om ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f Fn _om ) | 
						
							| 38 |  | fnima |  |-  ( f Fn _om -> ( f " _om ) = ran f ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " _om ) = ran f ) | 
						
							| 40 |  | fnsnfv |  |-  ( ( f Fn _om /\ (/) e. _om ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) | 
						
							| 41 | 37 9 40 | sylancl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " { (/) } ) = { ( f ` (/) ) } ) | 
						
							| 43 | 39 42 | difeq12d |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( f " _om ) \ ( f " { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 44 | 35 43 | eqtrd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 45 | 31 44 | breqtrd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 46 |  | entr |  |-  ( ( _om ~~ ( _om \ { (/) } ) /\ ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 47 | 24 45 46 | syl2anc |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 48 |  | entr |  |-  ( ( ran f ~~ _om /\ _om ~~ ( ran f \ { ( f ` (/) ) } ) ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 49 | 19 47 48 | syl2anc |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 50 |  | difexg |  |-  ( A e. _V -> ( A \ ran f ) e. _V ) | 
						
							| 51 |  | enrefg |  |-  ( ( A \ ran f ) e. _V -> ( A \ ran f ) ~~ ( A \ ran f ) ) | 
						
							| 52 | 5 50 51 | 3syl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ ran f ) ~~ ( A \ ran f ) ) | 
						
							| 53 |  | disjdif |  |-  ( ran f i^i ( A \ ran f ) ) = (/) | 
						
							| 54 | 53 | a1i |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f i^i ( A \ ran f ) ) = (/) ) | 
						
							| 55 |  | difss |  |-  ( ran f \ { ( f ` (/) ) } ) C_ ran f | 
						
							| 56 |  | ssrin |  |-  ( ( ran f \ { ( f ` (/) ) } ) C_ ran f -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) ) | 
						
							| 57 | 55 56 | ax-mp |  |-  ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) | 
						
							| 58 |  | sseq0 |  |-  ( ( ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) /\ ( ran f i^i ( A \ ran f ) ) = (/) ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) | 
						
							| 59 | 57 53 58 | mp2an |  |-  ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) | 
						
							| 60 | 59 | a1i |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) | 
						
							| 61 |  | unen |  |-  ( ( ( ran f ~~ ( ran f \ { ( f ` (/) ) } ) /\ ( A \ ran f ) ~~ ( A \ ran f ) ) /\ ( ( ran f i^i ( A \ ran f ) ) = (/) /\ ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) | 
						
							| 62 | 49 52 54 60 61 | syl22anc |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) | 
						
							| 63 | 8 | frnd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f C_ A ) | 
						
							| 64 |  | undif |  |-  ( ran f C_ A <-> ( ran f u. ( A \ ran f ) ) = A ) | 
						
							| 65 | 63 64 | sylib |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) = A ) | 
						
							| 66 |  | uncom |  |-  ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) | 
						
							| 67 |  | eldifn |  |-  ( ( f ` (/) ) e. ( A \ ran f ) -> -. ( f ` (/) ) e. ran f ) | 
						
							| 68 |  | fnfvelrn |  |-  ( ( f Fn _om /\ (/) e. _om ) -> ( f ` (/) ) e. ran f ) | 
						
							| 69 | 37 9 68 | sylancl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. ran f ) | 
						
							| 70 | 67 69 | nsyl3 |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> -. ( f ` (/) ) e. ( A \ ran f ) ) | 
						
							| 71 |  | disjsn |  |-  ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) <-> -. ( f ` (/) ) e. ( A \ ran f ) ) | 
						
							| 72 | 70 71 | sylibr |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) ) | 
						
							| 73 |  | undif4 |  |-  ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) | 
						
							| 75 |  | uncom |  |-  ( ( A \ ran f ) u. ran f ) = ( ran f u. ( A \ ran f ) ) | 
						
							| 76 | 75 65 | eqtrid |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ran f ) = A ) | 
						
							| 77 | 76 | difeq1d |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) = ( A \ { ( f ` (/) ) } ) ) | 
						
							| 78 | 74 77 | eqtrd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( A \ { ( f ` (/) ) } ) ) | 
						
							| 79 | 66 78 | eqtrid |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( A \ { ( f ` (/) ) } ) ) | 
						
							| 80 | 62 65 79 | 3brtr3d |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A ~~ ( A \ { ( f ` (/) ) } ) ) | 
						
							| 81 | 80 | ensymd |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { ( f ` (/) ) } ) ~~ A ) | 
						
							| 82 |  | entr |  |-  ( ( ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) /\ ( A \ { ( f ` (/) ) } ) ~~ A ) -> ( A \ { B } ) ~~ A ) | 
						
							| 83 | 13 81 82 | syl2anc |  |-  ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ A ) | 
						
							| 84 | 2 83 | exlimddv |  |-  ( ( _om ~<_ A /\ B e. A ) -> ( A \ { B } ) ~~ A ) | 
						
							| 85 |  | difsn |  |-  ( -. B e. A -> ( A \ { B } ) = A ) | 
						
							| 86 | 85 | adantl |  |-  ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) = A ) | 
						
							| 87 |  | enrefg |  |-  ( A e. _V -> A ~~ A ) | 
						
							| 88 | 4 87 | syl |  |-  ( _om ~<_ A -> A ~~ A ) | 
						
							| 89 | 88 | adantr |  |-  ( ( _om ~<_ A /\ -. B e. A ) -> A ~~ A ) | 
						
							| 90 | 86 89 | eqbrtrd |  |-  ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) ~~ A ) | 
						
							| 91 | 84 90 | pm2.61dan |  |-  ( _om ~<_ A -> ( A \ { B } ) ~~ A ) |