Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
|- ( _om ~<_ A -> E. f f : _om -1-1-> A ) |
2 |
1
|
adantr |
|- ( ( _om ~<_ A /\ B e. A ) -> E. f f : _om -1-1-> A ) |
3 |
|
reldom |
|- Rel ~<_ |
4 |
3
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
5 |
4
|
ad2antrr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A e. _V ) |
6 |
|
simplr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> B e. A ) |
7 |
|
f1f |
|- ( f : _om -1-1-> A -> f : _om --> A ) |
8 |
7
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om --> A ) |
9 |
|
peano1 |
|- (/) e. _om |
10 |
|
ffvelrn |
|- ( ( f : _om --> A /\ (/) e. _om ) -> ( f ` (/) ) e. A ) |
11 |
8 9 10
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. A ) |
12 |
|
difsnen |
|- ( ( A e. _V /\ B e. A /\ ( f ` (/) ) e. A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
13 |
5 6 11 12
|
syl3anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
14 |
|
vex |
|- f e. _V |
15 |
|
f1f1orn |
|- ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) |
16 |
15
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-onto-> ran f ) |
17 |
|
f1oen3g |
|- ( ( f e. _V /\ f : _om -1-1-onto-> ran f ) -> _om ~~ ran f ) |
18 |
14 16 17
|
sylancr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ran f ) |
19 |
18
|
ensymd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ _om ) |
20 |
3
|
brrelex1i |
|- ( _om ~<_ A -> _om e. _V ) |
21 |
20
|
ad2antrr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om e. _V ) |
22 |
|
limom |
|- Lim _om |
23 |
22
|
limenpsi |
|- ( _om e. _V -> _om ~~ ( _om \ { (/) } ) ) |
24 |
21 23
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( _om \ { (/) } ) ) |
25 |
14
|
resex |
|- ( f |` ( _om \ { (/) } ) ) e. _V |
26 |
|
simpr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-> A ) |
27 |
|
difss |
|- ( _om \ { (/) } ) C_ _om |
28 |
|
f1ores |
|- ( ( f : _om -1-1-> A /\ ( _om \ { (/) } ) C_ _om ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
29 |
26 27 28
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
30 |
|
f1oen3g |
|- ( ( ( f |` ( _om \ { (/) } ) ) e. _V /\ ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
31 |
25 29 30
|
sylancr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
32 |
|
f1orn |
|- ( f : _om -1-1-onto-> ran f <-> ( f Fn _om /\ Fun `' f ) ) |
33 |
32
|
simprbi |
|- ( f : _om -1-1-onto-> ran f -> Fun `' f ) |
34 |
|
imadif |
|- ( Fun `' f -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
35 |
16 33 34
|
3syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
36 |
|
f1fn |
|- ( f : _om -1-1-> A -> f Fn _om ) |
37 |
36
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f Fn _om ) |
38 |
|
fnima |
|- ( f Fn _om -> ( f " _om ) = ran f ) |
39 |
37 38
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " _om ) = ran f ) |
40 |
|
fnsnfv |
|- ( ( f Fn _om /\ (/) e. _om ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
41 |
37 9 40
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
42 |
41
|
eqcomd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " { (/) } ) = { ( f ` (/) ) } ) |
43 |
39 42
|
difeq12d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( f " _om ) \ ( f " { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
44 |
35 43
|
eqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
45 |
31 44
|
breqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) |
46 |
|
entr |
|- ( ( _om ~~ ( _om \ { (/) } ) /\ ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
47 |
24 45 46
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
48 |
|
entr |
|- ( ( ran f ~~ _om /\ _om ~~ ( ran f \ { ( f ` (/) ) } ) ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
49 |
19 47 48
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
50 |
|
difexg |
|- ( A e. _V -> ( A \ ran f ) e. _V ) |
51 |
|
enrefg |
|- ( ( A \ ran f ) e. _V -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
52 |
5 50 51
|
3syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
53 |
|
disjdif |
|- ( ran f i^i ( A \ ran f ) ) = (/) |
54 |
53
|
a1i |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f i^i ( A \ ran f ) ) = (/) ) |
55 |
|
difss |
|- ( ran f \ { ( f ` (/) ) } ) C_ ran f |
56 |
|
ssrin |
|- ( ( ran f \ { ( f ` (/) ) } ) C_ ran f -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) ) |
57 |
55 56
|
ax-mp |
|- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) |
58 |
|
sseq0 |
|- ( ( ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) /\ ( ran f i^i ( A \ ran f ) ) = (/) ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
59 |
57 53 58
|
mp2an |
|- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) |
60 |
59
|
a1i |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
61 |
|
unen |
|- ( ( ( ran f ~~ ( ran f \ { ( f ` (/) ) } ) /\ ( A \ ran f ) ~~ ( A \ ran f ) ) /\ ( ( ran f i^i ( A \ ran f ) ) = (/) /\ ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
62 |
49 52 54 60 61
|
syl22anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
63 |
8
|
frnd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f C_ A ) |
64 |
|
undif |
|- ( ran f C_ A <-> ( ran f u. ( A \ ran f ) ) = A ) |
65 |
63 64
|
sylib |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) = A ) |
66 |
|
uncom |
|- ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) |
67 |
|
eldifn |
|- ( ( f ` (/) ) e. ( A \ ran f ) -> -. ( f ` (/) ) e. ran f ) |
68 |
|
fnfvelrn |
|- ( ( f Fn _om /\ (/) e. _om ) -> ( f ` (/) ) e. ran f ) |
69 |
37 9 68
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. ran f ) |
70 |
67 69
|
nsyl3 |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> -. ( f ` (/) ) e. ( A \ ran f ) ) |
71 |
|
disjsn |
|- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) <-> -. ( f ` (/) ) e. ( A \ ran f ) ) |
72 |
70 71
|
sylibr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) ) |
73 |
|
undif4 |
|- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
74 |
72 73
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
75 |
|
uncom |
|- ( ( A \ ran f ) u. ran f ) = ( ran f u. ( A \ ran f ) ) |
76 |
75 65
|
eqtrid |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ran f ) = A ) |
77 |
76
|
difeq1d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) = ( A \ { ( f ` (/) ) } ) ) |
78 |
74 77
|
eqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( A \ { ( f ` (/) ) } ) ) |
79 |
66 78
|
eqtrid |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( A \ { ( f ` (/) ) } ) ) |
80 |
62 65 79
|
3brtr3d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A ~~ ( A \ { ( f ` (/) ) } ) ) |
81 |
80
|
ensymd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { ( f ` (/) ) } ) ~~ A ) |
82 |
|
entr |
|- ( ( ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) /\ ( A \ { ( f ` (/) ) } ) ~~ A ) -> ( A \ { B } ) ~~ A ) |
83 |
13 81 82
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ A ) |
84 |
2 83
|
exlimddv |
|- ( ( _om ~<_ A /\ B e. A ) -> ( A \ { B } ) ~~ A ) |
85 |
|
difsn |
|- ( -. B e. A -> ( A \ { B } ) = A ) |
86 |
85
|
adantl |
|- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) = A ) |
87 |
|
enrefg |
|- ( A e. _V -> A ~~ A ) |
88 |
4 87
|
syl |
|- ( _om ~<_ A -> A ~~ A ) |
89 |
88
|
adantr |
|- ( ( _om ~<_ A /\ -. B e. A ) -> A ~~ A ) |
90 |
86 89
|
eqbrtrd |
|- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) ~~ A ) |
91 |
84 90
|
pm2.61dan |
|- ( _om ~<_ A -> ( A \ { B } ) ~~ A ) |