| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|- ( _om ~<_ A -> E. f f : _om -1-1-> A ) |
| 2 |
1
|
adantr |
|- ( ( _om ~<_ A /\ B e. A ) -> E. f f : _om -1-1-> A ) |
| 3 |
|
reldom |
|- Rel ~<_ |
| 4 |
3
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A e. _V ) |
| 6 |
|
simplr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> B e. A ) |
| 7 |
|
f1f |
|- ( f : _om -1-1-> A -> f : _om --> A ) |
| 8 |
7
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om --> A ) |
| 9 |
|
peano1 |
|- (/) e. _om |
| 10 |
|
ffvelcdm |
|- ( ( f : _om --> A /\ (/) e. _om ) -> ( f ` (/) ) e. A ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. A ) |
| 12 |
|
difsnen |
|- ( ( A e. _V /\ B e. A /\ ( f ` (/) ) e. A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
| 13 |
5 6 11 12
|
syl3anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) ) |
| 14 |
|
vex |
|- f e. _V |
| 15 |
|
f1f1orn |
|- ( f : _om -1-1-> A -> f : _om -1-1-onto-> ran f ) |
| 16 |
15
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-onto-> ran f ) |
| 17 |
|
f1oen3g |
|- ( ( f e. _V /\ f : _om -1-1-onto-> ran f ) -> _om ~~ ran f ) |
| 18 |
14 16 17
|
sylancr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ran f ) |
| 19 |
18
|
ensymd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ _om ) |
| 20 |
3
|
brrelex1i |
|- ( _om ~<_ A -> _om e. _V ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om e. _V ) |
| 22 |
|
limom |
|- Lim _om |
| 23 |
22
|
limenpsi |
|- ( _om e. _V -> _om ~~ ( _om \ { (/) } ) ) |
| 24 |
21 23
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( _om \ { (/) } ) ) |
| 25 |
14
|
resex |
|- ( f |` ( _om \ { (/) } ) ) e. _V |
| 26 |
|
simpr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f : _om -1-1-> A ) |
| 27 |
|
difss |
|- ( _om \ { (/) } ) C_ _om |
| 28 |
|
f1ores |
|- ( ( f : _om -1-1-> A /\ ( _om \ { (/) } ) C_ _om ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
| 29 |
26 27 28
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) |
| 30 |
|
f1oen3g |
|- ( ( ( f |` ( _om \ { (/) } ) ) e. _V /\ ( f |` ( _om \ { (/) } ) ) : ( _om \ { (/) } ) -1-1-onto-> ( f " ( _om \ { (/) } ) ) ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
| 31 |
25 29 30
|
sylancr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( f " ( _om \ { (/) } ) ) ) |
| 32 |
|
f1orn |
|- ( f : _om -1-1-onto-> ran f <-> ( f Fn _om /\ Fun `' f ) ) |
| 33 |
32
|
simprbi |
|- ( f : _om -1-1-onto-> ran f -> Fun `' f ) |
| 34 |
|
imadif |
|- ( Fun `' f -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
| 35 |
16 33 34
|
3syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ( f " _om ) \ ( f " { (/) } ) ) ) |
| 36 |
|
f1fn |
|- ( f : _om -1-1-> A -> f Fn _om ) |
| 37 |
36
|
adantl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> f Fn _om ) |
| 38 |
|
fnima |
|- ( f Fn _om -> ( f " _om ) = ran f ) |
| 39 |
37 38
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " _om ) = ran f ) |
| 40 |
|
fnsnfv |
|- ( ( f Fn _om /\ (/) e. _om ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
| 41 |
37 9 40
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> { ( f ` (/) ) } = ( f " { (/) } ) ) |
| 42 |
41
|
eqcomd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " { (/) } ) = { ( f ` (/) ) } ) |
| 43 |
39 42
|
difeq12d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( f " _om ) \ ( f " { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
| 44 |
35 43
|
eqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f " ( _om \ { (/) } ) ) = ( ran f \ { ( f ` (/) ) } ) ) |
| 45 |
31 44
|
breqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 46 |
|
entr |
|- ( ( _om ~~ ( _om \ { (/) } ) /\ ( _om \ { (/) } ) ~~ ( ran f \ { ( f ` (/) ) } ) ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 47 |
24 45 46
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> _om ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 48 |
|
entr |
|- ( ( ran f ~~ _om /\ _om ~~ ( ran f \ { ( f ` (/) ) } ) ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 49 |
19 47 48
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f ~~ ( ran f \ { ( f ` (/) ) } ) ) |
| 50 |
|
difexg |
|- ( A e. _V -> ( A \ ran f ) e. _V ) |
| 51 |
|
enrefg |
|- ( ( A \ ran f ) e. _V -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
| 52 |
5 50 51
|
3syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ ran f ) ~~ ( A \ ran f ) ) |
| 53 |
|
disjdif |
|- ( ran f i^i ( A \ ran f ) ) = (/) |
| 54 |
53
|
a1i |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f i^i ( A \ ran f ) ) = (/) ) |
| 55 |
|
difss |
|- ( ran f \ { ( f ` (/) ) } ) C_ ran f |
| 56 |
|
ssrin |
|- ( ( ran f \ { ( f ` (/) ) } ) C_ ran f -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) ) |
| 57 |
55 56
|
ax-mp |
|- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) |
| 58 |
|
sseq0 |
|- ( ( ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) C_ ( ran f i^i ( A \ ran f ) ) /\ ( ran f i^i ( A \ ran f ) ) = (/) ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
| 59 |
57 53 58
|
mp2an |
|- ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) |
| 60 |
59
|
a1i |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) |
| 61 |
|
unen |
|- ( ( ( ran f ~~ ( ran f \ { ( f ` (/) ) } ) /\ ( A \ ran f ) ~~ ( A \ ran f ) ) /\ ( ( ran f i^i ( A \ ran f ) ) = (/) /\ ( ( ran f \ { ( f ` (/) ) } ) i^i ( A \ ran f ) ) = (/) ) ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
| 62 |
49 52 54 60 61
|
syl22anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) ~~ ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) ) |
| 63 |
8
|
frnd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ran f C_ A ) |
| 64 |
|
undif |
|- ( ran f C_ A <-> ( ran f u. ( A \ ran f ) ) = A ) |
| 65 |
63 64
|
sylib |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ran f u. ( A \ ran f ) ) = A ) |
| 66 |
|
uncom |
|- ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) |
| 67 |
|
eldifn |
|- ( ( f ` (/) ) e. ( A \ ran f ) -> -. ( f ` (/) ) e. ran f ) |
| 68 |
|
fnfvelrn |
|- ( ( f Fn _om /\ (/) e. _om ) -> ( f ` (/) ) e. ran f ) |
| 69 |
37 9 68
|
sylancl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( f ` (/) ) e. ran f ) |
| 70 |
67 69
|
nsyl3 |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> -. ( f ` (/) ) e. ( A \ ran f ) ) |
| 71 |
|
disjsn |
|- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) <-> -. ( f ` (/) ) e. ( A \ ran f ) ) |
| 72 |
70 71
|
sylibr |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) ) |
| 73 |
|
undif4 |
|- ( ( ( A \ ran f ) i^i { ( f ` (/) ) } ) = (/) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
| 74 |
72 73
|
syl |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) ) |
| 75 |
|
uncom |
|- ( ( A \ ran f ) u. ran f ) = ( ran f u. ( A \ ran f ) ) |
| 76 |
75 65
|
eqtrid |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ran f ) = A ) |
| 77 |
76
|
difeq1d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ( A \ ran f ) u. ran f ) \ { ( f ` (/) ) } ) = ( A \ { ( f ` (/) ) } ) ) |
| 78 |
74 77
|
eqtrd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( A \ ran f ) u. ( ran f \ { ( f ` (/) ) } ) ) = ( A \ { ( f ` (/) ) } ) ) |
| 79 |
66 78
|
eqtrid |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( ( ran f \ { ( f ` (/) ) } ) u. ( A \ ran f ) ) = ( A \ { ( f ` (/) ) } ) ) |
| 80 |
62 65 79
|
3brtr3d |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> A ~~ ( A \ { ( f ` (/) ) } ) ) |
| 81 |
80
|
ensymd |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { ( f ` (/) ) } ) ~~ A ) |
| 82 |
|
entr |
|- ( ( ( A \ { B } ) ~~ ( A \ { ( f ` (/) ) } ) /\ ( A \ { ( f ` (/) ) } ) ~~ A ) -> ( A \ { B } ) ~~ A ) |
| 83 |
13 81 82
|
syl2anc |
|- ( ( ( _om ~<_ A /\ B e. A ) /\ f : _om -1-1-> A ) -> ( A \ { B } ) ~~ A ) |
| 84 |
2 83
|
exlimddv |
|- ( ( _om ~<_ A /\ B e. A ) -> ( A \ { B } ) ~~ A ) |
| 85 |
|
difsn |
|- ( -. B e. A -> ( A \ { B } ) = A ) |
| 86 |
85
|
adantl |
|- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) = A ) |
| 87 |
|
enrefg |
|- ( A e. _V -> A ~~ A ) |
| 88 |
4 87
|
syl |
|- ( _om ~<_ A -> A ~~ A ) |
| 89 |
88
|
adantr |
|- ( ( _om ~<_ A /\ -. B e. A ) -> A ~~ A ) |
| 90 |
86 89
|
eqbrtrd |
|- ( ( _om ~<_ A /\ -. B e. A ) -> ( A \ { B } ) ~~ A ) |
| 91 |
84 90
|
pm2.61dan |
|- ( _om ~<_ A -> ( A \ { B } ) ~~ A ) |