Step |
Hyp |
Ref |
Expression |
1 |
|
unnum |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
2 |
1
|
3adant3 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A u. B ) e. dom card ) |
3 |
|
ssun2 |
|- B C_ ( A u. B ) |
4 |
|
ssdomg |
|- ( ( A u. B ) e. dom card -> ( B C_ ( A u. B ) -> B ~<_ ( A u. B ) ) ) |
5 |
2 3 4
|
mpisyl |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> B ~<_ ( A u. B ) ) |
6 |
|
simp1 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
7 |
|
djudom2 |
|- ( ( B ~<_ ( A u. B ) /\ A e. dom card ) -> ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) ) |
8 |
5 6 7
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) ) |
9 |
|
djucomen |
|- ( ( A e. dom card /\ ( A u. B ) e. dom card ) -> ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) |
10 |
6 2 9
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) |
11 |
|
domentr |
|- ( ( ( A |_| B ) ~<_ ( A |_| ( A u. B ) ) /\ ( A |_| ( A u. B ) ) ~~ ( ( A u. B ) |_| A ) ) -> ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) ) |
12 |
8 10 11
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) ) |
13 |
|
simp3 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) |
14 |
|
ssun1 |
|- A C_ ( A u. B ) |
15 |
|
ssdomg |
|- ( ( A u. B ) e. dom card -> ( A C_ ( A u. B ) -> A ~<_ ( A u. B ) ) ) |
16 |
2 14 15
|
mpisyl |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> A ~<_ ( A u. B ) ) |
17 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( A u. B ) ) -> _om ~<_ ( A u. B ) ) |
18 |
13 16 17
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> _om ~<_ ( A u. B ) ) |
19 |
|
infdjuabs |
|- ( ( ( A u. B ) e. dom card /\ _om ~<_ ( A u. B ) /\ A ~<_ ( A u. B ) ) -> ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) |
20 |
2 18 16 19
|
syl3anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) |
21 |
|
domentr |
|- ( ( ( A |_| B ) ~<_ ( ( A u. B ) |_| A ) /\ ( ( A u. B ) |_| A ) ~~ ( A u. B ) ) -> ( A |_| B ) ~<_ ( A u. B ) ) |
22 |
12 20 21
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~<_ ( A u. B ) ) |
23 |
|
undjudom |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
24 |
23
|
3adant3 |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
25 |
|
sbth |
|- ( ( ( A |_| B ) ~<_ ( A u. B ) /\ ( A u. B ) ~<_ ( A |_| B ) ) -> ( A |_| B ) ~~ ( A u. B ) ) |
26 |
22 24 25
|
syl2anc |
|- ( ( A e. dom card /\ B e. dom card /\ _om ~<_ A ) -> ( A |_| B ) ~~ ( A u. B ) ) |