| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difun2 |  |-  ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) | 
						
							| 2 |  | df-dju |  |-  ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 3 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 4 | 3 | xpeq2i |  |-  ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) | 
						
							| 5 |  | 1oex |  |-  1o e. _V | 
						
							| 6 |  | 0ex |  |-  (/) e. _V | 
						
							| 7 | 5 6 | xpsn |  |-  ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } | 
						
							| 8 | 4 7 | eqtr2i |  |-  { <. 1o , (/) >. } = ( { 1o } X. 1o ) | 
						
							| 9 | 2 8 | difeq12i |  |-  ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) | 
						
							| 10 |  | xp01disjl |  |-  ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) | 
						
							| 11 |  | disj3 |  |-  ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) | 
						
							| 12 | 10 11 | mpbi |  |-  ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) | 
						
							| 13 | 1 9 12 | 3eqtr4i |  |-  ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) | 
						
							| 14 |  | reldom |  |-  Rel ~<_ | 
						
							| 15 | 14 | brrelex2i |  |-  ( _om ~<_ A -> A e. _V ) | 
						
							| 16 |  | 1on |  |-  1o e. On | 
						
							| 17 |  | djudoml |  |-  ( ( A e. _V /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( _om ~<_ A -> A ~<_ ( A |_| 1o ) ) | 
						
							| 19 |  | domtr |  |-  ( ( _om ~<_ A /\ A ~<_ ( A |_| 1o ) ) -> _om ~<_ ( A |_| 1o ) ) | 
						
							| 20 | 18 19 | mpdan |  |-  ( _om ~<_ A -> _om ~<_ ( A |_| 1o ) ) | 
						
							| 21 |  | infdifsn |  |-  ( _om ~<_ ( A |_| 1o ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( _om ~<_ A -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) | 
						
							| 23 | 13 22 | eqbrtrrid |  |-  ( _om ~<_ A -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) | 
						
							| 24 | 23 | ensymd |  |-  ( _om ~<_ A -> ( A |_| 1o ) ~~ ( { (/) } X. A ) ) | 
						
							| 25 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 26 | 6 15 25 | sylancr |  |-  ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) | 
						
							| 27 |  | entr |  |-  ( ( ( A |_| 1o ) ~~ ( { (/) } X. A ) /\ ( { (/) } X. A ) ~~ A ) -> ( A |_| 1o ) ~~ A ) | 
						
							| 28 | 24 26 27 | syl2anc |  |-  ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |