Step |
Hyp |
Ref |
Expression |
1 |
|
difun2 |
|- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
2 |
|
df-dju |
|- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
3 |
|
df1o2 |
|- 1o = { (/) } |
4 |
3
|
xpeq2i |
|- ( { 1o } X. 1o ) = ( { 1o } X. { (/) } ) |
5 |
|
1oex |
|- 1o e. _V |
6 |
|
0ex |
|- (/) e. _V |
7 |
5 6
|
xpsn |
|- ( { 1o } X. { (/) } ) = { <. 1o , (/) >. } |
8 |
4 7
|
eqtr2i |
|- { <. 1o , (/) >. } = ( { 1o } X. 1o ) |
9 |
2 8
|
difeq12i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) \ ( { 1o } X. 1o ) ) |
10 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) |
11 |
|
disj3 |
|- ( ( ( { (/) } X. A ) i^i ( { 1o } X. 1o ) ) = (/) <-> ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) ) |
12 |
10 11
|
mpbi |
|- ( { (/) } X. A ) = ( ( { (/) } X. A ) \ ( { 1o } X. 1o ) ) |
13 |
1 9 12
|
3eqtr4i |
|- ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) = ( { (/) } X. A ) |
14 |
|
reldom |
|- Rel ~<_ |
15 |
14
|
brrelex2i |
|- ( _om ~<_ A -> A e. _V ) |
16 |
|
1on |
|- 1o e. On |
17 |
|
djudoml |
|- ( ( A e. _V /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) |
18 |
15 16 17
|
sylancl |
|- ( _om ~<_ A -> A ~<_ ( A |_| 1o ) ) |
19 |
|
domtr |
|- ( ( _om ~<_ A /\ A ~<_ ( A |_| 1o ) ) -> _om ~<_ ( A |_| 1o ) ) |
20 |
18 19
|
mpdan |
|- ( _om ~<_ A -> _om ~<_ ( A |_| 1o ) ) |
21 |
|
infdifsn |
|- ( _om ~<_ ( A |_| 1o ) -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) |
22 |
20 21
|
syl |
|- ( _om ~<_ A -> ( ( A |_| 1o ) \ { <. 1o , (/) >. } ) ~~ ( A |_| 1o ) ) |
23 |
13 22
|
eqbrtrrid |
|- ( _om ~<_ A -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
24 |
23
|
ensymd |
|- ( _om ~<_ A -> ( A |_| 1o ) ~~ ( { (/) } X. A ) ) |
25 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
26 |
6 15 25
|
sylancr |
|- ( _om ~<_ A -> ( { (/) } X. A ) ~~ A ) |
27 |
|
entr |
|- ( ( ( A |_| 1o ) ~~ ( { (/) } X. A ) /\ ( { (/) } X. A ) ~~ A ) -> ( A |_| 1o ) ~~ A ) |
28 |
24 26 27
|
syl2anc |
|- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |