Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B ~<_ A ) |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex2i |
|- ( B ~<_ A -> A e. _V ) |
4 |
|
djudom2 |
|- ( ( B ~<_ A /\ A e. _V ) -> ( A |_| B ) ~<_ ( A |_| A ) ) |
5 |
1 3 4
|
syl2anc2 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( A |_| A ) ) |
6 |
|
xp2dju |
|- ( 2o X. A ) = ( A |_| A ) |
7 |
5 6
|
breqtrrdi |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( 2o X. A ) ) |
8 |
|
simp1 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A e. dom card ) |
9 |
|
2onn |
|- 2o e. _om |
10 |
|
nnsdom |
|- ( 2o e. _om -> 2o ~< _om ) |
11 |
|
sdomdom |
|- ( 2o ~< _om -> 2o ~<_ _om ) |
12 |
9 10 11
|
mp2b |
|- 2o ~<_ _om |
13 |
|
simp2 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> _om ~<_ A ) |
14 |
|
domtr |
|- ( ( 2o ~<_ _om /\ _om ~<_ A ) -> 2o ~<_ A ) |
15 |
12 13 14
|
sylancr |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> 2o ~<_ A ) |
16 |
|
xpdom1g |
|- ( ( A e. dom card /\ 2o ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
17 |
8 15 16
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( 2o X. A ) ~<_ ( A X. A ) ) |
18 |
|
domtr |
|- ( ( ( A |_| B ) ~<_ ( 2o X. A ) /\ ( 2o X. A ) ~<_ ( A X. A ) ) -> ( A |_| B ) ~<_ ( A X. A ) ) |
19 |
7 17 18
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ ( A X. A ) ) |
20 |
|
infxpidm2 |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( A X. A ) ~~ A ) |
21 |
20
|
3adant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A X. A ) ~~ A ) |
22 |
|
domentr |
|- ( ( ( A |_| B ) ~<_ ( A X. A ) /\ ( A X. A ) ~~ A ) -> ( A |_| B ) ~<_ A ) |
23 |
19 21 22
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~<_ A ) |
24 |
2
|
brrelex1i |
|- ( B ~<_ A -> B e. _V ) |
25 |
24
|
3ad2ant3 |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> B e. _V ) |
26 |
|
djudoml |
|- ( ( A e. dom card /\ B e. _V ) -> A ~<_ ( A |_| B ) ) |
27 |
8 25 26
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> A ~<_ ( A |_| B ) ) |
28 |
|
sbth |
|- ( ( ( A |_| B ) ~<_ A /\ A ~<_ ( A |_| B ) ) -> ( A |_| B ) ~~ A ) |
29 |
23 27 28
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A |_| B ) ~~ A ) |