Step |
Hyp |
Ref |
Expression |
1 |
|
cardidm |
|- ( card ` ( card ` A ) ) = ( card ` A ) |
2 |
|
cardom |
|- ( card ` _om ) = _om |
3 |
|
simpr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) |
4 |
|
omelon |
|- _om e. On |
5 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
6 |
4 5
|
ax-mp |
|- _om e. dom card |
7 |
|
simpl |
|- ( ( A e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
8 |
|
carddom2 |
|- ( ( _om e. dom card /\ A e. dom card ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
9 |
6 7 8
|
sylancr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
10 |
3 9
|
mpbird |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` _om ) C_ ( card ` A ) ) |
11 |
2 10
|
eqsstrrid |
|- ( ( A e. dom card /\ _om ~<_ A ) -> _om C_ ( card ` A ) ) |
12 |
|
cardalephex |
|- ( _om C_ ( card ` A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
13 |
11 12
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
14 |
1 13
|
mpbii |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( card ` A ) = ( aleph ` x ) ) |
15 |
|
eqcom |
|- ( ( card ` A ) = ( aleph ` x ) <-> ( aleph ` x ) = ( card ` A ) ) |
16 |
15
|
rexbii |
|- ( E. x e. On ( card ` A ) = ( aleph ` x ) <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
17 |
14 16
|
sylib |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
18 |
|
alephfnon |
|- aleph Fn On |
19 |
|
fvelrnb |
|- ( aleph Fn On -> ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) ) |
20 |
18 19
|
ax-mp |
|- ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
21 |
17 20
|
sylibr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) e. ran aleph ) |
22 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
23 |
22
|
adantr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) ~~ A ) |
24 |
|
breq1 |
|- ( x = ( card ` A ) -> ( x ~~ A <-> ( card ` A ) ~~ A ) ) |
25 |
24
|
rspcev |
|- ( ( ( card ` A ) e. ran aleph /\ ( card ` A ) ~~ A ) -> E. x e. ran aleph x ~~ A ) |
26 |
21 23 25
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. ran aleph x ~~ A ) |