| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardidm |
|- ( card ` ( card ` A ) ) = ( card ` A ) |
| 2 |
|
cardom |
|- ( card ` _om ) = _om |
| 3 |
|
simpr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> _om ~<_ A ) |
| 4 |
|
omelon |
|- _om e. On |
| 5 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
| 6 |
4 5
|
ax-mp |
|- _om e. dom card |
| 7 |
|
simpl |
|- ( ( A e. dom card /\ _om ~<_ A ) -> A e. dom card ) |
| 8 |
|
carddom2 |
|- ( ( _om e. dom card /\ A e. dom card ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
| 9 |
6 7 8
|
sylancr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` _om ) C_ ( card ` A ) <-> _om ~<_ A ) ) |
| 10 |
3 9
|
mpbird |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` _om ) C_ ( card ` A ) ) |
| 11 |
2 10
|
eqsstrrid |
|- ( ( A e. dom card /\ _om ~<_ A ) -> _om C_ ( card ` A ) ) |
| 12 |
|
cardalephex |
|- ( _om C_ ( card ` A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
| 13 |
11 12
|
syl |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( ( card ` ( card ` A ) ) = ( card ` A ) <-> E. x e. On ( card ` A ) = ( aleph ` x ) ) ) |
| 14 |
1 13
|
mpbii |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( card ` A ) = ( aleph ` x ) ) |
| 15 |
|
eqcom |
|- ( ( card ` A ) = ( aleph ` x ) <-> ( aleph ` x ) = ( card ` A ) ) |
| 16 |
15
|
rexbii |
|- ( E. x e. On ( card ` A ) = ( aleph ` x ) <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 17 |
14 16
|
sylib |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 18 |
|
alephfnon |
|- aleph Fn On |
| 19 |
|
fvelrnb |
|- ( aleph Fn On -> ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) ) |
| 20 |
18 19
|
ax-mp |
|- ( ( card ` A ) e. ran aleph <-> E. x e. On ( aleph ` x ) = ( card ` A ) ) |
| 21 |
17 20
|
sylibr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) e. ran aleph ) |
| 22 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
| 23 |
22
|
adantr |
|- ( ( A e. dom card /\ _om ~<_ A ) -> ( card ` A ) ~~ A ) |
| 24 |
|
breq1 |
|- ( x = ( card ` A ) -> ( x ~~ A <-> ( card ` A ) ~~ A ) ) |
| 25 |
24
|
rspcev |
|- ( ( ( card ` A ) e. ran aleph /\ ( card ` A ) ~~ A ) -> E. x e. ran aleph x ~~ A ) |
| 26 |
21 23 25
|
syl2anc |
|- ( ( A e. dom card /\ _om ~<_ A ) -> E. x e. ran aleph x ~~ A ) |