Step |
Hyp |
Ref |
Expression |
1 |
|
onprc |
|- -. On e. _V |
2 |
|
eleq1 |
|- ( _om = On -> ( _om e. _V <-> On e. _V ) ) |
3 |
1 2
|
mtbiri |
|- ( _om = On -> -. _om e. _V ) |
4 |
|
ssexg |
|- ( ( _om C_ A /\ A e. On ) -> _om e. _V ) |
5 |
4
|
ancoms |
|- ( ( A e. On /\ _om C_ A ) -> _om e. _V ) |
6 |
3 5
|
nsyl3 |
|- ( ( A e. On /\ _om C_ A ) -> -. _om = On ) |
7 |
|
omon |
|- ( _om e. On \/ _om = On ) |
8 |
7
|
ori |
|- ( -. _om e. On -> _om = On ) |
9 |
6 8
|
nsyl2 |
|- ( ( A e. On /\ _om C_ A ) -> _om e. On ) |
10 |
|
id |
|- ( x = _om -> x = _om ) |
11 |
|
suceq |
|- ( x = _om -> suc x = suc _om ) |
12 |
10 11
|
breq12d |
|- ( x = _om -> ( x ~~ suc x <-> _om ~~ suc _om ) ) |
13 |
|
id |
|- ( x = y -> x = y ) |
14 |
|
suceq |
|- ( x = y -> suc x = suc y ) |
15 |
13 14
|
breq12d |
|- ( x = y -> ( x ~~ suc x <-> y ~~ suc y ) ) |
16 |
|
id |
|- ( x = suc y -> x = suc y ) |
17 |
|
suceq |
|- ( x = suc y -> suc x = suc suc y ) |
18 |
16 17
|
breq12d |
|- ( x = suc y -> ( x ~~ suc x <-> suc y ~~ suc suc y ) ) |
19 |
|
id |
|- ( x = A -> x = A ) |
20 |
|
suceq |
|- ( x = A -> suc x = suc A ) |
21 |
19 20
|
breq12d |
|- ( x = A -> ( x ~~ suc x <-> A ~~ suc A ) ) |
22 |
|
limom |
|- Lim _om |
23 |
22
|
limensuci |
|- ( _om e. On -> _om ~~ suc _om ) |
24 |
|
vex |
|- y e. _V |
25 |
24
|
sucex |
|- suc y e. _V |
26 |
|
en2sn |
|- ( ( y e. _V /\ suc y e. _V ) -> { y } ~~ { suc y } ) |
27 |
24 25 26
|
mp2an |
|- { y } ~~ { suc y } |
28 |
|
eloni |
|- ( y e. On -> Ord y ) |
29 |
|
ordirr |
|- ( Ord y -> -. y e. y ) |
30 |
28 29
|
syl |
|- ( y e. On -> -. y e. y ) |
31 |
|
disjsn |
|- ( ( y i^i { y } ) = (/) <-> -. y e. y ) |
32 |
30 31
|
sylibr |
|- ( y e. On -> ( y i^i { y } ) = (/) ) |
33 |
|
eloni |
|- ( suc y e. On -> Ord suc y ) |
34 |
|
ordirr |
|- ( Ord suc y -> -. suc y e. suc y ) |
35 |
33 34
|
syl |
|- ( suc y e. On -> -. suc y e. suc y ) |
36 |
|
sucelon |
|- ( y e. On <-> suc y e. On ) |
37 |
|
disjsn |
|- ( ( suc y i^i { suc y } ) = (/) <-> -. suc y e. suc y ) |
38 |
35 36 37
|
3imtr4i |
|- ( y e. On -> ( suc y i^i { suc y } ) = (/) ) |
39 |
32 38
|
jca |
|- ( y e. On -> ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) |
40 |
|
unen |
|- ( ( ( y ~~ suc y /\ { y } ~~ { suc y } ) /\ ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) -> ( y u. { y } ) ~~ ( suc y u. { suc y } ) ) |
41 |
|
df-suc |
|- suc y = ( y u. { y } ) |
42 |
|
df-suc |
|- suc suc y = ( suc y u. { suc y } ) |
43 |
40 41 42
|
3brtr4g |
|- ( ( ( y ~~ suc y /\ { y } ~~ { suc y } ) /\ ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) ) -> suc y ~~ suc suc y ) |
44 |
43
|
ex |
|- ( ( y ~~ suc y /\ { y } ~~ { suc y } ) -> ( ( ( y i^i { y } ) = (/) /\ ( suc y i^i { suc y } ) = (/) ) -> suc y ~~ suc suc y ) ) |
45 |
39 44
|
syl5 |
|- ( ( y ~~ suc y /\ { y } ~~ { suc y } ) -> ( y e. On -> suc y ~~ suc suc y ) ) |
46 |
27 45
|
mpan2 |
|- ( y ~~ suc y -> ( y e. On -> suc y ~~ suc suc y ) ) |
47 |
46
|
com12 |
|- ( y e. On -> ( y ~~ suc y -> suc y ~~ suc suc y ) ) |
48 |
47
|
ad2antrr |
|- ( ( ( y e. On /\ _om e. On ) /\ _om C_ y ) -> ( y ~~ suc y -> suc y ~~ suc suc y ) ) |
49 |
|
vex |
|- x e. _V |
50 |
|
limensuc |
|- ( ( x e. _V /\ Lim x ) -> x ~~ suc x ) |
51 |
49 50
|
mpan |
|- ( Lim x -> x ~~ suc x ) |
52 |
51
|
ad2antrr |
|- ( ( ( Lim x /\ _om e. On ) /\ _om C_ x ) -> x ~~ suc x ) |
53 |
52
|
a1d |
|- ( ( ( Lim x /\ _om e. On ) /\ _om C_ x ) -> ( A. y e. x ( _om C_ y -> y ~~ suc y ) -> x ~~ suc x ) ) |
54 |
12 15 18 21 23 48 53
|
tfindsg |
|- ( ( ( A e. On /\ _om e. On ) /\ _om C_ A ) -> A ~~ suc A ) |
55 |
54
|
exp31 |
|- ( A e. On -> ( _om e. On -> ( _om C_ A -> A ~~ suc A ) ) ) |
56 |
55
|
com23 |
|- ( A e. On -> ( _om C_ A -> ( _om e. On -> A ~~ suc A ) ) ) |
57 |
56
|
imp |
|- ( ( A e. On /\ _om C_ A ) -> ( _om e. On -> A ~~ suc A ) ) |
58 |
9 57
|
mpd |
|- ( ( A e. On /\ _om C_ A ) -> A ~~ suc A ) |