Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infeq1d.1 | |- ( ph -> B = C ) |
|
| Assertion | infeq1d | |- ( ph -> inf ( B , A , R ) = inf ( C , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | |- ( ph -> B = C ) |
|
| 2 | infeq1 | |- ( B = C -> inf ( B , A , R ) = inf ( C , A , R ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> inf ( B , A , R ) = inf ( C , A , R ) ) |