Metamath Proof Explorer


Theorem infeq1i

Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infeq1i.1
|- B = C
Assertion infeq1i
|- inf ( B , A , R ) = inf ( C , A , R )

Proof

Step Hyp Ref Expression
1 infeq1i.1
 |-  B = C
2 infeq1
 |-  ( B = C -> inf ( B , A , R ) = inf ( C , A , R ) )
3 1 2 ax-mp
 |-  inf ( B , A , R ) = inf ( C , A , R )