Step |
Hyp |
Ref |
Expression |
1 |
|
difexg |
|- ( _om e. _V -> ( _om \ { (/) } ) e. _V ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
2
|
snid |
|- (/) e. { (/) } |
4 |
|
disj4 |
|- ( ( _om i^i { (/) } ) = (/) <-> -. ( _om \ { (/) } ) C. _om ) |
5 |
|
disj3 |
|- ( ( _om i^i { (/) } ) = (/) <-> _om = ( _om \ { (/) } ) ) |
6 |
4 5
|
bitr3i |
|- ( -. ( _om \ { (/) } ) C. _om <-> _om = ( _om \ { (/) } ) ) |
7 |
|
peano1 |
|- (/) e. _om |
8 |
|
eleq2 |
|- ( _om = ( _om \ { (/) } ) -> ( (/) e. _om <-> (/) e. ( _om \ { (/) } ) ) ) |
9 |
7 8
|
mpbii |
|- ( _om = ( _om \ { (/) } ) -> (/) e. ( _om \ { (/) } ) ) |
10 |
9
|
eldifbd |
|- ( _om = ( _om \ { (/) } ) -> -. (/) e. { (/) } ) |
11 |
6 10
|
sylbi |
|- ( -. ( _om \ { (/) } ) C. _om -> -. (/) e. { (/) } ) |
12 |
3 11
|
mt4 |
|- ( _om \ { (/) } ) C. _om |
13 |
|
unidif0 |
|- U. ( _om \ { (/) } ) = U. _om |
14 |
|
limom |
|- Lim _om |
15 |
|
limuni |
|- ( Lim _om -> _om = U. _om ) |
16 |
14 15
|
ax-mp |
|- _om = U. _om |
17 |
13 16
|
eqtr4i |
|- U. ( _om \ { (/) } ) = _om |
18 |
17
|
psseq2i |
|- ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) <-> ( _om \ { (/) } ) C. _om ) |
19 |
12 18
|
mpbir |
|- ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) |
20 |
|
psseq1 |
|- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. x ) ) |
21 |
|
unieq |
|- ( x = ( _om \ { (/) } ) -> U. x = U. ( _om \ { (/) } ) ) |
22 |
21
|
psseq2d |
|- ( x = ( _om \ { (/) } ) -> ( ( _om \ { (/) } ) C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
23 |
20 22
|
bitrd |
|- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
24 |
23
|
spcegv |
|- ( ( _om \ { (/) } ) e. _V -> ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) -> E. x x C. U. x ) ) |
25 |
1 19 24
|
mpisyl |
|- ( _om e. _V -> E. x x C. U. x ) |