| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infpwfien |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) ~~ A ) | 
						
							| 2 |  | relen |  |-  Rel ~~ | 
						
							| 3 | 2 | brrelex1i |  |-  ( ( ~P A i^i Fin ) ~~ A -> ( ~P A i^i Fin ) e. _V ) | 
						
							| 4 | 1 3 | syl |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ~P A i^i Fin ) e. _V ) | 
						
							| 5 |  | difss |  |-  ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) | 
						
							| 6 |  | ssdomg |  |-  ( ( ~P A i^i Fin ) e. _V -> ( ( ( ~P A i^i Fin ) \ { (/) } ) C_ ( ~P A i^i Fin ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) ) | 
						
							| 7 | 4 5 6 | mpisyl |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) ) | 
						
							| 8 |  | domentr |  |-  ( ( ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~~ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) | 
						
							| 9 | 7 1 8 | syl2anc |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) | 
						
							| 10 |  | numdom |  |-  ( ( A e. dom card /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) | 
						
							| 11 | 9 10 | syldan |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card ) | 
						
							| 12 |  | eqid |  |-  ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) = ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) | 
						
							| 13 | 12 | fifo |  |-  ( A e. dom card -> ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) | 
						
							| 15 |  | fodomnum |  |-  ( ( ( ~P A i^i Fin ) \ { (/) } ) e. dom card -> ( ( x e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| x ) : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) ) | 
						
							| 16 | 11 14 15 | sylc |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) ) | 
						
							| 17 |  | domtr |  |-  ( ( ( fi ` A ) ~<_ ( ( ~P A i^i Fin ) \ { (/) } ) /\ ( ( ~P A i^i Fin ) \ { (/) } ) ~<_ A ) -> ( fi ` A ) ~<_ A ) | 
						
							| 18 | 16 9 17 | syl2anc |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~<_ A ) | 
						
							| 19 |  | fvex |  |-  ( fi ` A ) e. _V | 
						
							| 20 |  | ssfii |  |-  ( A e. dom card -> A C_ ( fi ` A ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> A C_ ( fi ` A ) ) | 
						
							| 22 |  | ssdomg |  |-  ( ( fi ` A ) e. _V -> ( A C_ ( fi ` A ) -> A ~<_ ( fi ` A ) ) ) | 
						
							| 23 | 19 21 22 | mpsyl |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> A ~<_ ( fi ` A ) ) | 
						
							| 24 |  | sbth |  |-  ( ( ( fi ` A ) ~<_ A /\ A ~<_ ( fi ` A ) ) -> ( fi ` A ) ~~ A ) | 
						
							| 25 | 18 23 24 | syl2anc |  |-  ( ( A e. dom card /\ _om ~<_ A ) -> ( fi ` A ) ~~ A ) |