Metamath Proof Explorer


Theorem infglb

Description: An infimum is the greatest lower bound. See also infcl and inflb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1
|- ( ph -> R Or A )
infcl.2
|- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) )
Assertion infglb
|- ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) )

Proof

Step Hyp Ref Expression
1 infcl.1
 |-  ( ph -> R Or A )
2 infcl.2
 |-  ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) )
3 df-inf
 |-  inf ( B , A , R ) = sup ( B , A , `' R )
4 3 breq1i
 |-  ( inf ( B , A , R ) R C <-> sup ( B , A , `' R ) R C )
5 simpr
 |-  ( ( ph /\ C e. A ) -> C e. A )
6 cnvso
 |-  ( R Or A <-> `' R Or A )
7 1 6 sylib
 |-  ( ph -> `' R Or A )
8 1 2 infcllem
 |-  ( ph -> E. x e. A ( A. y e. B -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. B y `' R z ) ) )
9 7 8 supcl
 |-  ( ph -> sup ( B , A , `' R ) e. A )
10 9 adantr
 |-  ( ( ph /\ C e. A ) -> sup ( B , A , `' R ) e. A )
11 brcnvg
 |-  ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( C `' R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) R C ) )
12 11 bicomd
 |-  ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) )
13 5 10 12 syl2anc
 |-  ( ( ph /\ C e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) )
14 4 13 bitrid
 |-  ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C <-> C `' R sup ( B , A , `' R ) ) )
15 7 8 suplub
 |-  ( ph -> ( ( C e. A /\ C `' R sup ( B , A , `' R ) ) -> E. z e. B C `' R z ) )
16 15 expdimp
 |-  ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B C `' R z ) )
17 vex
 |-  z e. _V
18 brcnvg
 |-  ( ( C e. A /\ z e. _V ) -> ( C `' R z <-> z R C ) )
19 5 17 18 sylancl
 |-  ( ( ph /\ C e. A ) -> ( C `' R z <-> z R C ) )
20 19 rexbidv
 |-  ( ( ph /\ C e. A ) -> ( E. z e. B C `' R z <-> E. z e. B z R C ) )
21 16 20 sylibd
 |-  ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B z R C ) )
22 14 21 sylbid
 |-  ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C -> E. z e. B z R C ) )
23 22 expimpd
 |-  ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) )