| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infcl.1 |  |-  ( ph -> R Or A ) | 
						
							| 2 |  | infcl.2 |  |-  ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) | 
						
							| 3 |  | df-inf |  |-  inf ( B , A , R ) = sup ( B , A , `' R ) | 
						
							| 4 | 3 | breq1i |  |-  ( inf ( B , A , R ) R C <-> sup ( B , A , `' R ) R C ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ C e. A ) -> C e. A ) | 
						
							| 6 |  | cnvso |  |-  ( R Or A <-> `' R Or A ) | 
						
							| 7 | 1 6 | sylib |  |-  ( ph -> `' R Or A ) | 
						
							| 8 | 1 2 | infcllem |  |-  ( ph -> E. x e. A ( A. y e. B -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. B y `' R z ) ) ) | 
						
							| 9 | 7 8 | supcl |  |-  ( ph -> sup ( B , A , `' R ) e. A ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ C e. A ) -> sup ( B , A , `' R ) e. A ) | 
						
							| 11 |  | brcnvg |  |-  ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( C `' R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) R C ) ) | 
						
							| 12 | 11 | bicomd |  |-  ( ( C e. A /\ sup ( B , A , `' R ) e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) ) | 
						
							| 13 | 5 10 12 | syl2anc |  |-  ( ( ph /\ C e. A ) -> ( sup ( B , A , `' R ) R C <-> C `' R sup ( B , A , `' R ) ) ) | 
						
							| 14 | 4 13 | bitrid |  |-  ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C <-> C `' R sup ( B , A , `' R ) ) ) | 
						
							| 15 | 7 8 | suplub |  |-  ( ph -> ( ( C e. A /\ C `' R sup ( B , A , `' R ) ) -> E. z e. B C `' R z ) ) | 
						
							| 16 | 15 | expdimp |  |-  ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B C `' R z ) ) | 
						
							| 17 |  | vex |  |-  z e. _V | 
						
							| 18 |  | brcnvg |  |-  ( ( C e. A /\ z e. _V ) -> ( C `' R z <-> z R C ) ) | 
						
							| 19 | 5 17 18 | sylancl |  |-  ( ( ph /\ C e. A ) -> ( C `' R z <-> z R C ) ) | 
						
							| 20 | 19 | rexbidv |  |-  ( ( ph /\ C e. A ) -> ( E. z e. B C `' R z <-> E. z e. B z R C ) ) | 
						
							| 21 | 16 20 | sylibd |  |-  ( ( ph /\ C e. A ) -> ( C `' R sup ( B , A , `' R ) -> E. z e. B z R C ) ) | 
						
							| 22 | 14 21 | sylbid |  |-  ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C -> E. z e. B z R C ) ) | 
						
							| 23 | 22 | expimpd |  |-  ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) ) |