Step |
Hyp |
Ref |
Expression |
1 |
|
inficc.a |
|- ( ph -> A e. RR* ) |
2 |
|
inficc.b |
|- ( ph -> B e. RR* ) |
3 |
|
inficc.s |
|- ( ph -> S C_ ( A [,] B ) ) |
4 |
|
inficc.n0 |
|- ( ph -> S =/= (/) ) |
5 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
6 |
5
|
a1i |
|- ( ph -> ( A [,] B ) C_ RR* ) |
7 |
3 6
|
sstrd |
|- ( ph -> S C_ RR* ) |
8 |
|
infxrcl |
|- ( S C_ RR* -> inf ( S , RR* , < ) e. RR* ) |
9 |
7 8
|
syl |
|- ( ph -> inf ( S , RR* , < ) e. RR* ) |
10 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. RR* ) |
11 |
2
|
adantr |
|- ( ( ph /\ x e. S ) -> B e. RR* ) |
12 |
3
|
sselda |
|- ( ( ph /\ x e. S ) -> x e. ( A [,] B ) ) |
13 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ph /\ x e. S ) -> A <_ x ) |
15 |
14
|
ralrimiva |
|- ( ph -> A. x e. S A <_ x ) |
16 |
|
infxrgelb |
|- ( ( S C_ RR* /\ A e. RR* ) -> ( A <_ inf ( S , RR* , < ) <-> A. x e. S A <_ x ) ) |
17 |
7 1 16
|
syl2anc |
|- ( ph -> ( A <_ inf ( S , RR* , < ) <-> A. x e. S A <_ x ) ) |
18 |
15 17
|
mpbird |
|- ( ph -> A <_ inf ( S , RR* , < ) ) |
19 |
|
n0 |
|- ( S =/= (/) <-> E. x x e. S ) |
20 |
4 19
|
sylib |
|- ( ph -> E. x x e. S ) |
21 |
9
|
adantr |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) e. RR* ) |
22 |
5 12
|
sselid |
|- ( ( ph /\ x e. S ) -> x e. RR* ) |
23 |
7
|
adantr |
|- ( ( ph /\ x e. S ) -> S C_ RR* ) |
24 |
|
simpr |
|- ( ( ph /\ x e. S ) -> x e. S ) |
25 |
|
infxrlb |
|- ( ( S C_ RR* /\ x e. S ) -> inf ( S , RR* , < ) <_ x ) |
26 |
23 24 25
|
syl2anc |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) <_ x ) |
27 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
28 |
10 11 12 27
|
syl3anc |
|- ( ( ph /\ x e. S ) -> x <_ B ) |
29 |
21 22 11 26 28
|
xrletrd |
|- ( ( ph /\ x e. S ) -> inf ( S , RR* , < ) <_ B ) |
30 |
29
|
ex |
|- ( ph -> ( x e. S -> inf ( S , RR* , < ) <_ B ) ) |
31 |
30
|
exlimdv |
|- ( ph -> ( E. x x e. S -> inf ( S , RR* , < ) <_ B ) ) |
32 |
20 31
|
mpd |
|- ( ph -> inf ( S , RR* , < ) <_ B ) |
33 |
1 2 9 18 32
|
eliccxrd |
|- ( ph -> inf ( S , RR* , < ) e. ( A [,] B ) ) |